Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense: Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense

The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2023-05, Vol.85 (4), p.1412-1422
Hauptverfasser: Palacios, Oskar A., Espinoza-Hicks, José C., Camacho-Dávila, Alejandro A., López, Blanca R., de-Bashan, Luz E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1422
container_issue 4
container_start_page 1412
container_title Microbial ecology
container_volume 85
creator Palacios, Oskar A.
Espinoza-Hicks, José C.
Camacho-Dávila, Alejandro A.
López, Blanca R.
de-Bashan, Luz E.
description The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo -inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana ; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A . brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.
doi_str_mv 10.1007/s00248-022-02026-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811060068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811060068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1644-b55e06b953cdd80f2b9931060fe26ee06ecb79b738a78c430888a2d4c493ff1c3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EEqHwApwscV4Y_8mu99iGtlQqAgmQuFleZ5y4bOwwdhTgWXhY3AaJG4fRjDzf7xtZH2MvBbwWAMObAiC16UDKViD7Tj9iC6GV7ITRXx-zBcC47FQvzVP2rJQ7ADH0Ui3Y77cxBCRMHguPiV_-OKxdbfMF1iNi4p8quZgKz4GvtnMmnGfHS6b8LabokuPnjfeV1y3ym1SRnK8xJ36Mdfvw-D56ym7eOH5N-Vi33UfKu1xj2vCLpkWKzeNXLvtIcZ4POz6RK3HGVPA5exLcXPDF337Gvlxdfl69624_XN-szm87L3qtu2m5ROincan8em0gyGkclYAeAsoe2wr9NIzToIwbjNcKjDFOrrXXowpBeHXGXp1895S_H7BUe5cPlNpJK424d4LeNJU8qdp_SiEMdk9x5-inFWDvU7CnFGxLwT6kYHWD1AkqTZw2SP-s_0P9AfXOjZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811060068</pqid></control><display><type>article</type><title>Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense: Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense</title><source>SpringerLink Journals - AutoHoldings</source><creator>Palacios, Oskar A. ; Espinoza-Hicks, José C. ; Camacho-Dávila, Alejandro A. ; López, Blanca R. ; de-Bashan, Luz E.</creator><creatorcontrib>Palacios, Oskar A. ; Espinoza-Hicks, José C. ; Camacho-Dávila, Alejandro A. ; López, Blanca R. ; de-Bashan, Luz E.</creatorcontrib><description>The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo -inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana ; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A . brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-022-02026-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algae ; Aquatic microorganisms ; Azospirillum brasilense ; Bacteria ; Biomedical and Life Sciences ; Carbohydrates ; Carbon ; Carbon compounds ; Carbon sources ; Chlorella ; Chlorella sorokiniana ; Ecology ; Exudates ; Exudation ; Geoecology/Natural Processes ; Glycerol ; Growth ; Inositol ; Inositols ; Lactate ; Life Sciences ; Metabolites ; Microalgae ; Microbial Ecology ; Microbiological strains ; Microbiology ; Nature Conservation ; NMR ; Nuclear magnetic resonance ; Phytoplankton ; Plant Microbe Interactions ; Strains (organisms) ; Uracil ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2023-05, Vol.85 (4), p.1412-1422</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1644-b55e06b953cdd80f2b9931060fe26ee06ecb79b738a78c430888a2d4c493ff1c3</citedby><cites>FETCH-LOGICAL-c1644-b55e06b953cdd80f2b9931060fe26ee06ecb79b738a78c430888a2d4c493ff1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00248-022-02026-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00248-022-02026-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Palacios, Oskar A.</creatorcontrib><creatorcontrib>Espinoza-Hicks, José C.</creatorcontrib><creatorcontrib>Camacho-Dávila, Alejandro A.</creatorcontrib><creatorcontrib>López, Blanca R.</creatorcontrib><creatorcontrib>de-Bashan, Luz E.</creatorcontrib><title>Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense: Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><description>The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo -inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana ; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A . brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Azospirillum brasilense</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>Carbon compounds</subject><subject>Carbon sources</subject><subject>Chlorella</subject><subject>Chlorella sorokiniana</subject><subject>Ecology</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Geoecology/Natural Processes</subject><subject>Glycerol</subject><subject>Growth</subject><subject>Inositol</subject><subject>Inositols</subject><subject>Lactate</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microalgae</subject><subject>Microbial Ecology</subject><subject>Microbiological strains</subject><subject>Microbiology</subject><subject>Nature Conservation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phytoplankton</subject><subject>Plant Microbe Interactions</subject><subject>Strains (organisms)</subject><subject>Uracil</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9uEzEQxi0EEqHwApwscV4Y_8mu99iGtlQqAgmQuFleZ5y4bOwwdhTgWXhY3AaJG4fRjDzf7xtZH2MvBbwWAMObAiC16UDKViD7Tj9iC6GV7ITRXx-zBcC47FQvzVP2rJQ7ADH0Ui3Y77cxBCRMHguPiV_-OKxdbfMF1iNi4p8quZgKz4GvtnMmnGfHS6b8LabokuPnjfeV1y3ym1SRnK8xJ36Mdfvw-D56ym7eOH5N-Vi33UfKu1xj2vCLpkWKzeNXLvtIcZ4POz6RK3HGVPA5exLcXPDF337Gvlxdfl69624_XN-szm87L3qtu2m5ROincan8em0gyGkclYAeAsoe2wr9NIzToIwbjNcKjDFOrrXXowpBeHXGXp1895S_H7BUe5cPlNpJK424d4LeNJU8qdp_SiEMdk9x5-inFWDvU7CnFGxLwT6kYHWD1AkqTZw2SP-s_0P9AfXOjZI</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Palacios, Oskar A.</creator><creator>Espinoza-Hicks, José C.</creator><creator>Camacho-Dávila, Alejandro A.</creator><creator>López, Blanca R.</creator><creator>de-Bashan, Luz E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20230501</creationdate><title>Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense</title><author>Palacios, Oskar A. ; Espinoza-Hicks, José C. ; Camacho-Dávila, Alejandro A. ; López, Blanca R. ; de-Bashan, Luz E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1644-b55e06b953cdd80f2b9931060fe26ee06ecb79b738a78c430888a2d4c493ff1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Azospirillum brasilense</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>Carbon compounds</topic><topic>Carbon sources</topic><topic>Chlorella</topic><topic>Chlorella sorokiniana</topic><topic>Ecology</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Geoecology/Natural Processes</topic><topic>Glycerol</topic><topic>Growth</topic><topic>Inositol</topic><topic>Inositols</topic><topic>Lactate</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microalgae</topic><topic>Microbial Ecology</topic><topic>Microbiological strains</topic><topic>Microbiology</topic><topic>Nature Conservation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phytoplankton</topic><topic>Plant Microbe Interactions</topic><topic>Strains (organisms)</topic><topic>Uracil</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios, Oskar A.</creatorcontrib><creatorcontrib>Espinoza-Hicks, José C.</creatorcontrib><creatorcontrib>Camacho-Dávila, Alejandro A.</creatorcontrib><creatorcontrib>López, Blanca R.</creatorcontrib><creatorcontrib>de-Bashan, Luz E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios, Oskar A.</au><au>Espinoza-Hicks, José C.</au><au>Camacho-Dávila, Alejandro A.</au><au>López, Blanca R.</au><au>de-Bashan, Luz E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense: Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>85</volume><issue>4</issue><spage>1412</spage><epage>1422</epage><pages>1412-1422</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo -inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana ; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A . brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00248-022-02026-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2023-05, Vol.85 (4), p.1412-1422
issn 0095-3628
1432-184X
language eng
recordid cdi_proquest_journals_2811060068
source SpringerLink Journals - AutoHoldings
subjects Algae
Aquatic microorganisms
Azospirillum brasilense
Bacteria
Biomedical and Life Sciences
Carbohydrates
Carbon
Carbon compounds
Carbon sources
Chlorella
Chlorella sorokiniana
Ecology
Exudates
Exudation
Geoecology/Natural Processes
Glycerol
Growth
Inositol
Inositols
Lactate
Life Sciences
Metabolites
Microalgae
Microbial Ecology
Microbiological strains
Microbiology
Nature Conservation
NMR
Nuclear magnetic resonance
Phytoplankton
Plant Microbe Interactions
Strains (organisms)
Uracil
Water Quality/Water Pollution
title Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense: Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20Exudates%20Between%20Strains%20of%20Chlorella%20sorokiniana%20Affect%20the%20Interaction%20with%20the%20Microalga%20Growth-Promoting%20Bacteria%20Azospirillum%20brasilense:%20Differences%20in%20Exudates%20Between%20Strains%20of%20Chlorella%20sorokiniana%20Affect%20the%20Interaction%20with%20the%20Microalga%20Growth-Promoting%20Bacteria%20Azospirillum%20brasilense&rft.jtitle=Microbial%20ecology&rft.au=Palacios,%20Oskar%20A.&rft.date=2023-05-01&rft.volume=85&rft.issue=4&rft.spage=1412&rft.epage=1422&rft.pages=1412-1422&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-022-02026-4&rft_dat=%3Cproquest_cross%3E2811060068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811060068&rft_id=info:pmid/&rfr_iscdi=true