Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense: Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense
The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear ma...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2023-05, Vol.85 (4), p.1412-1422 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microalga
Chlorella sorokiniana
and the microalgae growth-promoting bacteria (MGPB)
Azospirillum brasilense
have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of
C. sorokiniana
(UTEX 2714 and UTEX 2805) and
A. brasilense
Cd when grown together in an oligotrophic medium. Lactate and
myo
-inositol were identified as carbon metabolites exuded by the two strains of
C. sorokiniana
; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn,
A
.
brasilense
exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from
C. sorokiniana
UTEX 2805 than from
C. sorokiniana
UTEX 2714, the growth of
A. brasilense
was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria. |
---|---|
ISSN: | 0095-3628 1432-184X |
DOI: | 10.1007/s00248-022-02026-4 |