A BK inequality for random matchings
Let $G=(S,T,E)$ be a bipartite graph. For a matching $M$ of $G$ , let $V(M)$ be the set of vertices covered by $M$ , and let $B(M)$ be the symmetric difference of $V(M)$ and $S$ . We prove that if $M$ is a uniform random matching of $G$ , then $B(M)$ satisfies the BK inequality for increasing events...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2023-01, Vol.32 (1), p.151-157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$G=(S,T,E)$
be a bipartite graph. For a matching
$M$
of
$G$
, let
$V(M)$
be the set of vertices covered by
$M$
, and let
$B(M)$
be the symmetric difference of
$V(M)$
and
$S$
. We prove that if
$M$
is a uniform random matching of
$G$
, then
$B(M)$
satisfies the BK inequality for increasing events. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548322000189 |