Uniqueness of the Gibbs measure for the 4-state anti-ferromagnetic Potts model on the regular tree

We show that the $4$ -state anti-ferromagnetic Potts model with interaction parameter $w\in (0,1)$ on the infinite $(d+1)$ -regular tree has a unique Gibbs measure if $w\geq 1-\dfrac{4}{d+1_{_{\;}}}$ for all $d\geq 4$ . This is tight since it is known that there are multiple Gibbs measures when $0\l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2023-01, Vol.32 (1), p.158-182
Hauptverfasser: de Boer, David, Buys, Pjotr, Regts, Guus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the $4$ -state anti-ferromagnetic Potts model with interaction parameter $w\in (0,1)$ on the infinite $(d+1)$ -regular tree has a unique Gibbs measure if $w\geq 1-\dfrac{4}{d+1_{_{\;}}}$ for all $d\geq 4$ . This is tight since it is known that there are multiple Gibbs measures when $0\leq w\lt 1-\dfrac{4}{d+1}$ and $d\geq 4$ . We moreover give a new proof of the uniqueness of the Gibbs measure for the $3$ -state Potts model on the $(d+1)$ -regular tree for $w\geq 1-\dfrac{3}{d+1}$ when $d\geq 3$ and for $w\in (0,1)$ when $d=2$ .
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548322000207