Uniqueness of the Gibbs measure for the 4-state anti-ferromagnetic Potts model on the regular tree
We show that the $4$ -state anti-ferromagnetic Potts model with interaction parameter $w\in (0,1)$ on the infinite $(d+1)$ -regular tree has a unique Gibbs measure if $w\geq 1-\dfrac{4}{d+1_{_{\;}}}$ for all $d\geq 4$ . This is tight since it is known that there are multiple Gibbs measures when $0\l...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2023-01, Vol.32 (1), p.158-182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the
$4$
-state anti-ferromagnetic Potts model with interaction parameter
$w\in (0,1)$
on the infinite
$(d+1)$
-regular tree has a unique Gibbs measure if
$w\geq 1-\dfrac{4}{d+1_{_{\;}}}$
for all
$d\geq 4$
. This is tight since it is known that there are multiple Gibbs measures when
$0\leq w\lt 1-\dfrac{4}{d+1}$
and
$d\geq 4$
. We moreover give a new proof of the uniqueness of the Gibbs measure for the
$3$
-state Potts model on the
$(d+1)$
-regular tree for
$w\geq 1-\dfrac{3}{d+1}$
when
$d\geq 3$
and for
$w\in (0,1)$
when
$d=2$
. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548322000207 |