Boundary values of zero solutions of hypoelliptic differential operators in ultradistribution spaces

We study ultradistributional boundary values of zero solutions of a hypoelliptic constant coefficient partial differential operator P ( D ) = P ( D x , D t ) on R d + 1 . Our work unifies and considerably extends various classical results of Komatsu and Matsuzawa about boundary values of holomorphic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2023-06, Vol.386 (1-2), p.779-819
Hauptverfasser: Debrouwere, Andreas, Kalmes, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study ultradistributional boundary values of zero solutions of a hypoelliptic constant coefficient partial differential operator P ( D ) = P ( D x , D t ) on R d + 1 . Our work unifies and considerably extends various classical results of Komatsu and Matsuzawa about boundary values of holomorphic functions, harmonic functions and zero solutions of the heat equation in ultradistribution spaces. We also give new proofs of several results of Langenbruch (Manuscripta Math. 26:17–35, 1978/79) about distributional boundary values of zero solutions of P ( D ).
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-022-02411-x