Sharp regularity estimates for a singular inhomogeneous (m, p)-Laplacian equation
In this paper, we investigate a class of doubly nonlinear evolutions PDEs. We establish sharp regularity for the solutions in H\"older spaces. The proof is based on the geometric tangential method and intrinsic scaling technique. Our findings extend and recover the results in the context of the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate a class of doubly nonlinear evolutions PDEs. We establish sharp regularity for the solutions in H\"older spaces. The proof is based on the geometric tangential method and intrinsic scaling technique. Our findings extend and recover the results in the context of the classical evolution PDEs with singular signature via a unified treatment in the slow, normal and fast diffusion regimes. In addition, we provide some applications to certain nonlinear evolution models, which may have their own mathematical interest. |
---|---|
ISSN: | 2331-8422 |