Performance Evaluation of E-Band Transmit-Receive Front-Ends Based on Characterization of Joint Effects of IQ Imbalance and Carrier Phase/Frequency Offset
A comprehensive approach for evaluating the performance of transmit-receive (TX-RX) analog front-ends as regards to the characterization of the joint effects of IQ imbalance and carrier phase/frequency offset is presented in this article. The study consists of a system model, a system-level (SL) sim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2023-05, Vol.71 (5), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A comprehensive approach for evaluating the performance of transmit-receive (TX-RX) analog front-ends as regards to the characterization of the joint effects of IQ imbalance and carrier phase/frequency offset is presented in this article. The study consists of a system model, a system-level (SL) simulation, and measurements. An SL discretization approach is implemented for the characterization of the joint effects of nonidealities. The approach uses SL simulation to assist in evaluating the measurement results. It also addresses the challenges associated with accurate performance estimation and assessment related to the nonidealities of the analog front-ends. The performance evaluation studies for the simulation and measurement are analyzed, considering recording time, evaluation period per frame, and averaging versus carrier frequency offset (CFO). The measurements are ensured with coherent and noncoherent local oscillator (LO) configurations concerning E-band simplex data transmission. The experimental studies are carried out based on bandwidth-and frequency-dependent performance evaluations. A correlation between the coherent and noncoherent LO configurations is reported in detail in terms of the evaluation of measured error vector magnitude (EVM) in the presence of the joint effects of IQ imbalance and carrier phase/frequency offset. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2022.3223946 |