Dislocation toughening in single‐crystal KNbO3
The growing research interest in dislocation‐tuned functionality in ceramics is evident, with the most recent proofs‐of‐concept for enhanced ferroelectric properties, electrical conductivity, and superconductivity via dislocations. In this work, we focus on dislocation‐tuned mechanical properties an...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2023-07, Vol.106 (7), p.4371-4381 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4381 |
---|---|
container_issue | 7 |
container_start_page | 4371 |
container_title | Journal of the American Ceramic Society |
container_volume | 106 |
creator | Preuß, Oliver Bruder, Enrico Lu, Wenjun Zhuo, Fangping Minnert, Christian Zhang, Jiawen Rödel, Jürgen Fang, Xufei |
description | The growing research interest in dislocation‐tuned functionality in ceramics is evident, with the most recent proofs‐of‐concept for enhanced ferroelectric properties, electrical conductivity, and superconductivity via dislocations. In this work, we focus on dislocation‐tuned mechanical properties and demonstrate that, by engineering high dislocation densities (up to 1014 m−2) into KNbO3 at room temperature, the fracture toughness can be improved by a factor of 2.8. The microstructures, including dislocations and domain walls, are examined by optical microscopy, electron channeling contrast imaging, piezo‐response force microscopy, and transmission electron microscopy methods to shed light on the toughening mechanisms. In addition, high‐temperature (above the Curie temperature of KNbO3) indentation tests were performed to exclude the influence of ferroelastic toughening, such that the origin of the toughening effect is pinpointed to be dislocations. |
doi_str_mv | 10.1111/jace.19088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2809436248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809436248</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2618-24651bfc01571a7ab4d3d309079d695a42bb5f495020dbafec0d9d56aa24749c3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqFw4QkicU7ZdWzHPlahlJ-KXuBsOY5TEoUkxKlQbjwCz8iTkLbsZXak0Yz0EXKNMMfpbitj3RwVSHlCAuQcI6pQnJIAAGiUSArn5ML7arKoJAsI3JW-bq0ZyrYJh3a3fXdN2WzDsgn9pLX7_f6x_egHU4fPL9kmviRnham9u_rXGXm7X76mD9F6s3pMF-uoowJlRJngmBUWkCdoEpOxPM5jUJCoXChuGM0yXjDFgUKemcJZyFXOhTGUJUzZeEZujr1d337unB901e76ZprUVIJisaBMTik8pr7K2o2668sP048aQe9x6D0OfcChnxbp8vDFf_7XVG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809436248</pqid></control><display><type>article</type><title>Dislocation toughening in single‐crystal KNbO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Preuß, Oliver ; Bruder, Enrico ; Lu, Wenjun ; Zhuo, Fangping ; Minnert, Christian ; Zhang, Jiawen ; Rödel, Jürgen ; Fang, Xufei</creator><creatorcontrib>Preuß, Oliver ; Bruder, Enrico ; Lu, Wenjun ; Zhuo, Fangping ; Minnert, Christian ; Zhang, Jiawen ; Rödel, Jürgen ; Fang, Xufei</creatorcontrib><description>The growing research interest in dislocation‐tuned functionality in ceramics is evident, with the most recent proofs‐of‐concept for enhanced ferroelectric properties, electrical conductivity, and superconductivity via dislocations. In this work, we focus on dislocation‐tuned mechanical properties and demonstrate that, by engineering high dislocation densities (up to 1014 m−2) into KNbO3 at room temperature, the fracture toughness can be improved by a factor of 2.8. The microstructures, including dislocations and domain walls, are examined by optical microscopy, electron channeling contrast imaging, piezo‐response force microscopy, and transmission electron microscopy methods to shed light on the toughening mechanisms. In addition, high‐temperature (above the Curie temperature of KNbO3) indentation tests were performed to exclude the influence of ferroelastic toughening, such that the origin of the toughening effect is pinpointed to be dislocations.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.19088</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Crystal dislocations ; Crystal growth ; Curie temperature ; dislocation ; Dislocation density ; dislocation toughening ; Domain walls ; Electrical resistivity ; Ferroelectricity ; Fracture toughness ; Hardness tests ; Indentation ; Mechanical properties ; Optical microscopy ; oxide perovskite ; Potassium niobates ; Room temperature ; room‐temperature plasticity ; Superconductivity</subject><ispartof>Journal of the American Ceramic Society, 2023-07, Vol.106 (7), p.4371-4381</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of American Ceramic Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3887-0111 ; 0000-0001-5194-320X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.19088$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.19088$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Preuß, Oliver</creatorcontrib><creatorcontrib>Bruder, Enrico</creatorcontrib><creatorcontrib>Lu, Wenjun</creatorcontrib><creatorcontrib>Zhuo, Fangping</creatorcontrib><creatorcontrib>Minnert, Christian</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Fang, Xufei</creatorcontrib><title>Dislocation toughening in single‐crystal KNbO3</title><title>Journal of the American Ceramic Society</title><description>The growing research interest in dislocation‐tuned functionality in ceramics is evident, with the most recent proofs‐of‐concept for enhanced ferroelectric properties, electrical conductivity, and superconductivity via dislocations. In this work, we focus on dislocation‐tuned mechanical properties and demonstrate that, by engineering high dislocation densities (up to 1014 m−2) into KNbO3 at room temperature, the fracture toughness can be improved by a factor of 2.8. The microstructures, including dislocations and domain walls, are examined by optical microscopy, electron channeling contrast imaging, piezo‐response force microscopy, and transmission electron microscopy methods to shed light on the toughening mechanisms. In addition, high‐temperature (above the Curie temperature of KNbO3) indentation tests were performed to exclude the influence of ferroelastic toughening, such that the origin of the toughening effect is pinpointed to be dislocations.</description><subject>Crystal dislocations</subject><subject>Crystal growth</subject><subject>Curie temperature</subject><subject>dislocation</subject><subject>Dislocation density</subject><subject>dislocation toughening</subject><subject>Domain walls</subject><subject>Electrical resistivity</subject><subject>Ferroelectricity</subject><subject>Fracture toughness</subject><subject>Hardness tests</subject><subject>Indentation</subject><subject>Mechanical properties</subject><subject>Optical microscopy</subject><subject>oxide perovskite</subject><subject>Potassium niobates</subject><subject>Room temperature</subject><subject>room‐temperature plasticity</subject><subject>Superconductivity</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNotkM1OwzAQhC0EEqFw4QkicU7ZdWzHPlahlJ-KXuBsOY5TEoUkxKlQbjwCz8iTkLbsZXak0Yz0EXKNMMfpbitj3RwVSHlCAuQcI6pQnJIAAGiUSArn5ML7arKoJAsI3JW-bq0ZyrYJh3a3fXdN2WzDsgn9pLX7_f6x_egHU4fPL9kmviRnham9u_rXGXm7X76mD9F6s3pMF-uoowJlRJngmBUWkCdoEpOxPM5jUJCoXChuGM0yXjDFgUKemcJZyFXOhTGUJUzZeEZujr1d337unB901e76ZprUVIJisaBMTik8pr7K2o2668sP048aQe9x6D0OfcChnxbp8vDFf_7XVG0</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Preuß, Oliver</creator><creator>Bruder, Enrico</creator><creator>Lu, Wenjun</creator><creator>Zhuo, Fangping</creator><creator>Minnert, Christian</creator><creator>Zhang, Jiawen</creator><creator>Rödel, Jürgen</creator><creator>Fang, Xufei</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3887-0111</orcidid><orcidid>https://orcid.org/0000-0001-5194-320X</orcidid></search><sort><creationdate>202307</creationdate><title>Dislocation toughening in single‐crystal KNbO3</title><author>Preuß, Oliver ; Bruder, Enrico ; Lu, Wenjun ; Zhuo, Fangping ; Minnert, Christian ; Zhang, Jiawen ; Rödel, Jürgen ; Fang, Xufei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2618-24651bfc01571a7ab4d3d309079d695a42bb5f495020dbafec0d9d56aa24749c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystal dislocations</topic><topic>Crystal growth</topic><topic>Curie temperature</topic><topic>dislocation</topic><topic>Dislocation density</topic><topic>dislocation toughening</topic><topic>Domain walls</topic><topic>Electrical resistivity</topic><topic>Ferroelectricity</topic><topic>Fracture toughness</topic><topic>Hardness tests</topic><topic>Indentation</topic><topic>Mechanical properties</topic><topic>Optical microscopy</topic><topic>oxide perovskite</topic><topic>Potassium niobates</topic><topic>Room temperature</topic><topic>room‐temperature plasticity</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Preuß, Oliver</creatorcontrib><creatorcontrib>Bruder, Enrico</creatorcontrib><creatorcontrib>Lu, Wenjun</creatorcontrib><creatorcontrib>Zhuo, Fangping</creatorcontrib><creatorcontrib>Minnert, Christian</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Fang, Xufei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Preuß, Oliver</au><au>Bruder, Enrico</au><au>Lu, Wenjun</au><au>Zhuo, Fangping</au><au>Minnert, Christian</au><au>Zhang, Jiawen</au><au>Rödel, Jürgen</au><au>Fang, Xufei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation toughening in single‐crystal KNbO3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2023-07</date><risdate>2023</risdate><volume>106</volume><issue>7</issue><spage>4371</spage><epage>4381</epage><pages>4371-4381</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The growing research interest in dislocation‐tuned functionality in ceramics is evident, with the most recent proofs‐of‐concept for enhanced ferroelectric properties, electrical conductivity, and superconductivity via dislocations. In this work, we focus on dislocation‐tuned mechanical properties and demonstrate that, by engineering high dislocation densities (up to 1014 m−2) into KNbO3 at room temperature, the fracture toughness can be improved by a factor of 2.8. The microstructures, including dislocations and domain walls, are examined by optical microscopy, electron channeling contrast imaging, piezo‐response force microscopy, and transmission electron microscopy methods to shed light on the toughening mechanisms. In addition, high‐temperature (above the Curie temperature of KNbO3) indentation tests were performed to exclude the influence of ferroelastic toughening, such that the origin of the toughening effect is pinpointed to be dislocations.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.19088</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3887-0111</orcidid><orcidid>https://orcid.org/0000-0001-5194-320X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2023-07, Vol.106 (7), p.4371-4381 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2809436248 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Crystal dislocations Crystal growth Curie temperature dislocation Dislocation density dislocation toughening Domain walls Electrical resistivity Ferroelectricity Fracture toughness Hardness tests Indentation Mechanical properties Optical microscopy oxide perovskite Potassium niobates Room temperature room‐temperature plasticity Superconductivity |
title | Dislocation toughening in single‐crystal KNbO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20toughening%20in%20single%E2%80%90crystal%20KNbO3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Preu%C3%9F,%20Oliver&rft.date=2023-07&rft.volume=106&rft.issue=7&rft.spage=4371&rft.epage=4381&rft.pages=4371-4381&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.19088&rft_dat=%3Cproquest_wiley%3E2809436248%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809436248&rft_id=info:pmid/&rfr_iscdi=true |