Dislocation toughening in single‐crystal KNbO3

The growing research interest in dislocation‐tuned functionality in ceramics is evident, with the most recent proofs‐of‐concept for enhanced ferroelectric properties, electrical conductivity, and superconductivity via dislocations. In this work, we focus on dislocation‐tuned mechanical properties an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2023-07, Vol.106 (7), p.4371-4381
Hauptverfasser: Preuß, Oliver, Bruder, Enrico, Lu, Wenjun, Zhuo, Fangping, Minnert, Christian, Zhang, Jiawen, Rödel, Jürgen, Fang, Xufei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growing research interest in dislocation‐tuned functionality in ceramics is evident, with the most recent proofs‐of‐concept for enhanced ferroelectric properties, electrical conductivity, and superconductivity via dislocations. In this work, we focus on dislocation‐tuned mechanical properties and demonstrate that, by engineering high dislocation densities (up to 1014 m−2) into KNbO3 at room temperature, the fracture toughness can be improved by a factor of 2.8. The microstructures, including dislocations and domain walls, are examined by optical microscopy, electron channeling contrast imaging, piezo‐response force microscopy, and transmission electron microscopy methods to shed light on the toughening mechanisms. In addition, high‐temperature (above the Curie temperature of KNbO3) indentation tests were performed to exclude the influence of ferroelastic toughening, such that the origin of the toughening effect is pinpointed to be dislocations.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.19088