Visual Transformation Telling

Humans can naturally reason from superficial state differences (e.g. ground wetness) to transformations descriptions (e.g. raining) according to their life experience. In this paper, we propose a new visual reasoning task to test this transformation reasoning ability in real-world scenarios, called...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Cui, Wanqing, Hong, Xin, Lan, Yanyan, Pang, Liang, Guo, Jiafeng, Cheng, Xueqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humans can naturally reason from superficial state differences (e.g. ground wetness) to transformations descriptions (e.g. raining) according to their life experience. In this paper, we propose a new visual reasoning task to test this transformation reasoning ability in real-world scenarios, called \textbf{V}isual \textbf{T}ransformation \textbf{T}elling (VTT). Given a series of states (i.e. images), VTT requires to describe the transformation occurring between every two adjacent states. Different from existing visual reasoning tasks that focus on surface state reasoning, the advantage of VTT is that it captures the underlying causes, e.g. actions or events, behind the differences among states. We collect a novel dataset to support the study of transformation reasoning from two existing instructional video datasets, CrossTask and COIN, comprising 13,547 samples. Each sample involves the key state images along with their transformation descriptions. Our dataset covers diverse real-world activities, providing a rich resource for training and evaluation. To construct an initial benchmark for VTT, we test several models, including traditional visual storytelling methods (CST, GLACNet, Densecap) and advanced multimodal large language models (LLaVA v1.5-7B, Qwen-VL-chat, Gemini Pro Vision, GPT-4o, and GPT-4). Experimental results reveal that even state-of-the-art models still face challenges in VTT, highlighting substantial areas for improvement.
ISSN:2331-8422