A Lightweight CNN-Transformer Model for Learning Traveling Salesman Problems
Several studies have attempted to solve traveling salesman problems (TSPs) using various deep learning techniques. Among them, Transformer-based models show state-of-the-art performance even for large-scale Traveling Salesman Problems (TSPs). However, they are based on fully-connected attention mode...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several studies have attempted to solve traveling salesman problems (TSPs) using various deep learning techniques. Among them, Transformer-based models show state-of-the-art performance even for large-scale Traveling Salesman Problems (TSPs). However, they are based on fully-connected attention models and suffer from large computational complexity and GPU memory usage. Our work is the first CNN-Transformer model based on a CNN embedding layer and partial self-attention for TSP. Our CNN-Transformer model is able to better learn spatial features from input data using a CNN embedding layer compared with the standard Transformer-based models. It also removes considerable redundancy in fully-connected attention models using the proposed partial self-attention. Experimental results show that the proposed CNN embedding layer and partial self-attention are very effective in improving performance and computational complexity. The proposed model exhibits the best performance in real-world datasets and outperforms other existing state-of-the-art (SOTA) Transformer-based models in various aspects. Our code is publicly available at https://github.com/cm8908/CNN_Transformer3. |
---|---|
ISSN: | 2331-8422 |