Thermal switch based on ferroelasticity VA-N binary compounds

Ferroelastic materials possess two or more equally stable orientation variants and can be effectively modulated via external fields, including stress and electronic field. In this paper, taking the VA-N ferroelastic materials as examples, we propose a thermal switch device based on their ferroelasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-05, Vol.122 (18)
Hauptverfasser: Zhang, Yuwen, Cui, Chunfeng, Ouyang, Tao, He, Chaoyu, Li, Jin, Chen, Mingxing, Tang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferroelastic materials possess two or more equally stable orientation variants and can be effectively modulated via external fields, including stress and electronic field. In this paper, taking the VA-N ferroelastic materials as examples, we propose a thermal switch device based on their ferroelastic characteristics. The results show that the VA-N binary compound exhibits excellent ferroelasticity, high reversible elastic strain (5.5%–54.1%), and suitable switching energy barriers (0.012–0.386 eV/atom) in both δ and α phases. Utilizing the advanced on-the-fly machine learning potential, we obtain physically well-defined quadratic dispersion curves in the long-wavelength limit and further evaluate their lattice thermal conductivity of δ and α phase VA-N binary compounds. Due to the difference in phonon group velocities, the lattice thermal conductivity of VA-N binary compounds along the armchair direction is obviously smaller than that along the zigzag direction. Such remarkable anisotropy and easily switchable features based on ferroelasticity endow reversible and real-time regulation of thermal conductivity of VA-N binary compounds. The ferroelastic-based thermal switch hosts high switch ratios range from 2.08 to 5.99 and does not require additional energy to maintain the modulation state. The results presented herein provide a pavement for designing next-generation thermal switches and propose a reliable solution for eliminating the nonphysical pseudo-phenomenon of phonon dispersion curve violation of quadratic dispersion in the long-wavelength limit.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0152863