Effect of excess air ratio and ignition timing on performance, emission and combustion characteristics of high speed hydrogen engine

The main goal of automobile researchers is to develop internal combustion engines that are fuel efficient and emit zero pollutants. It can be inferred from prior research publications that lean burn conditions can significantly reduce emissions while improving engine efficiency. The lean-burn engine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2023-04, Vol.1161 (1), p.12006
Hauptverfasser: Jalindar Shinde, Balu, Karunamurthy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main goal of automobile researchers is to develop internal combustion engines that are fuel efficient and emit zero pollutants. It can be inferred from prior research publications that lean burn conditions can significantly reduce emissions while improving engine efficiency. The lean-burn engine combustion temperatures are lower hence harmful emissions like NO are reduced. Gasoline fuels have a narrow equivalence ratio window hence it was necessary to evaluate the other alternative fuels with a wider equivalence ratio for using it in IC engines for better performance and fewer emissions. This experiment is conducted on a single-cylinder digital three-spark ignited electronic fuel injected (DTSI-EFI) single-cylinder, 4 stroke high-speed SI engine fuelled by hydrogen. The excess air ratios are changed and MBT timing was also optimized. Hydrogen has delivered the lowest emissions under lean conditions. This data gives guidelines for developing SI engines with hydrogen port fuel injection for meeting future emissions norms. This experimental attempt is to protect the environment from greenhouse gas (GHG) emissions. The highest Brake Thermal Efficiency (BTE) is recorded at the leaner condition (λ = 4) as 37.53%, the highest power output is 7.02 kW at λ=1.5. CO and THC emissions are absent in hydrogen fuel and NO emissions reduces towards lean combustion.
ISSN:1755-1307
1755-1315
DOI:10.1088/1755-1315/1161/1/012006