The Fourier Transform Associated to the k-Hyperbolic Dirac Operator

The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2023-07, Vol.33 (3), Article 26
Hauptverfasser: Li, Wenxin, Lian, Pan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-023-01274-y