Numerical simulation of fine particle liquid–solid flow in porous media based on LBM‐IBM‐DEM

Fine particle liquid–solid flow in porous media is involved in many industrial processes such as oil exploitation, geothermal reinjection, and filtration systems. It is of great significance to master the behaviours of the fine particle liquid–solid flow in porous media. At present, there are few st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2023-06, Vol.101 (6), p.3576-3591
Hauptverfasser: Fo, Bin, Xu, Ruifu, Xi, Jianfei, Lu, Yang, Song, Xianping, Cai, Jie, Gu, Zhongzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fine particle liquid–solid flow in porous media is involved in many industrial processes such as oil exploitation, geothermal reinjection, and filtration systems. It is of great significance to master the behaviours of the fine particle liquid–solid flow in porous media. At present, there are few studies on the influences of the migration of fine particles on the flow field in porous media, and the effects of the porosity of porous media and inlet fluid velocity on the migration behaviours of fine particles in porous media. In this paper, a liquid–solid flow model was established based on the lattice Boltzmann method (LBM)‐immersed boundary method (IBM)‐distinct element method (DEM) and verified by the classical Drag Kiss Tumble (DKT) phenomena and flow around a cylinder successfully. In this model, the interaction between solid particles is analyzed using the distinct element method, and the interaction between fine particles and flow field is handled by IBM. Then, the migration and blockage of fine particles in porous media was studied using this model. It is found that, in addition to the blockage, a large amount of blocked‐surface sliding‐separation occur in fine particles. At the same time, the decrease in porosity increases the damage degree of fine particles on the permeability. The porosity exerts great influence on the penetration rate and dispersion behaviour of fine particles. The inlet fluid velocity mainly affects the residence time of fine particles and the average velocity of motion in the direction perpendicular to the main flow direction.
ISSN:0008-4034
1939-019X
DOI:10.1002/cjce.24690