A spanning bandwidth theorem in random graphs

The bandwidth theorem of Böttcher, Schacht and Taraz states that any n -vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n -vertex k -colourable graphs H with bounded maximum degree and bandwidth o ( n ). Recently, a subset of the authors proved a random graph analogu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2022-07, Vol.31 (4), p.598-628
Hauptverfasser: Allen, Peter, Böttcher, Julia, Ehrenmüller, Julia, Schnitzer, Jakob, Taraz, Anusch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bandwidth theorem of Böttcher, Schacht and Taraz states that any n -vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n -vertex k -colourable graphs H with bounded maximum degree and bandwidth o ( n ). Recently, a subset of the authors proved a random graph analogue of this statement: for $p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$ a.a.s. each spanning subgraph G of G ( n , p ) with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)pn$ contains all n -vertex k -colourable graphs H with maximum degree $\Delta$ , bandwidth o ( n ), and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in G contain many copies of $K_\Delta$ then we can drop the restriction on H that $Cp^{-2}$ vertices should not be in triangles.
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548321000481