A spanning bandwidth theorem in random graphs
The bandwidth theorem of Böttcher, Schacht and Taraz states that any n -vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n -vertex k -colourable graphs H with bounded maximum degree and bandwidth o ( n ). Recently, a subset of the authors proved a random graph analogu...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2022-07, Vol.31 (4), p.598-628 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bandwidth theorem of Böttcher, Schacht and Taraz states that any
n
-vertex graph
G
with minimum degree
$\big(\tfrac{k-1}{k}+o(1)\big)n$
contains all
n
-vertex
k
-colourable graphs
H
with bounded maximum degree and bandwidth
o
(
n
). Recently, a subset of the authors proved a random graph analogue of this statement: for
$p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$
a.a.s. each spanning subgraph
G
of
G
(
n
,
p
) with minimum degree
$\big(\tfrac{k-1}{k}+o(1)\big)pn$
contains all
n
-vertex
k
-colourable graphs
H
with maximum degree
$\Delta$
, bandwidth
o
(
n
), and at least
$C p^{-2}$
vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in
G
contain many copies of
$K_\Delta$
then we can drop the restriction on
H
that
$Cp^{-2}$
vertices should not be in triangles. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548321000481 |