On deficiency problems for graphs
Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of graph deficiency . Given a global spanning property $\mathca...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2022-05, Vol.31 (3), p.478-488 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of
graph deficiency
. Given a global spanning property
$\mathcal P$
and a graph
$G$
, the deficiency
$\text{def}(G)$
of the graph
$G$
with respect to the property
$\mathcal P$
is the smallest non-negative integer
t
such that the join
$G*K_t$
has property
$\mathcal P$
. In particular, Nenadov, Sudakov and Wagner raised the question of determining how many edges an
n
-vertex graph
$G$
needs to ensure
$G*K_t$
contains a
$K_r$
-factor (for any fixed
$r\geq 3$
). In this paper, we resolve their problem fully. We also give an analogous result that forces
$G*K_t$
to contain any fixed bipartite
$(n+t)$
-vertex graph of bounded degree and small bandwidth. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548321000389 |