Ground states for \(p\)-fractional Choquard-type equations with critical local nonlinearity and doubly critical nonlocality
We consider a \(p\)-fractional Choquard-type equation \[ (-\Delta)_p^s u+a|u|^{p-2}u=b(K\ast F(u))F'(u)+\varepsilon_g |u|^{p_g-2}u \quad\text{in \(\mathbb{R}^N\)}, \] where \(0
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sakuma, Masaki |
description | We consider a \(p\)-fractional Choquard-type equation \[ (-\Delta)_p^s u+a|u|^{p-2}u=b(K\ast F(u))F'(u)+\varepsilon_g |u|^{p_g-2}u \quad\text{in \(\mathbb{R}^N\)}, \] where \(0 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2808432314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808432314</sourcerecordid><originalsourceid>FETCH-proquest_journals_28084323143</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvEPCih0BNWu29-PMAHgsltilNCUnNJkjx5U1A8Opldpn52J0FSihjB1LmlK5QCjBmWUaPJ1oULEHvqzVedxgcdwJwbyyud1O9J73lrZNGc4WrwTw9tx1x8ySwCHsMAL-kG3BrpZNtoJSJqo1WUgse3BnzcLgz_qHmHxaBSIZ8g5Y9VyDS71yj7eV8r25ksuGhANeMxtvQABpaZmXOKDvk7D_qA-NNT98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808432314</pqid></control><display><type>article</type><title>Ground states for \(p\)-fractional Choquard-type equations with critical local nonlinearity and doubly critical nonlocality</title><source>Freely Accessible Journals</source><creator>Sakuma, Masaki</creator><creatorcontrib>Sakuma, Masaki</creatorcontrib><description>We consider a \(p\)-fractional Choquard-type equation \[ (-\Delta)_p^s u+a|u|^{p-2}u=b(K\ast F(u))F'(u)+\varepsilon_g |u|^{p_g-2}u \quad\text{in \(\mathbb{R}^N\)}, \] where \(0<s<1<p<p_g\leq p_s^*\), \(N \geq \max\{2ps+\alpha,p^2 s\}\), \(a,b,\varepsilon_g\in (0,\infty)\), \(K(x)= |x|^{-(N-\alpha)}\), \(\alpha\in (0,N)\), and \(F\) is a doubly critical nonlinearity in the sense of the Hardy-Littlewood-Sobolev inequality. It is noteworthy that the local nonlinearity may also have critical growth. Combining Brezis-Nirenberg's method with some new ideas, we obtain the ground state solutions via the mountain pass lemma and a generalized Lions-type theorem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ground state ; Nonlinearity</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sakuma, Masaki</creatorcontrib><title>Ground states for \(p\)-fractional Choquard-type equations with critical local nonlinearity and doubly critical nonlocality</title><title>arXiv.org</title><description>We consider a \(p\)-fractional Choquard-type equation \[ (-\Delta)_p^s u+a|u|^{p-2}u=b(K\ast F(u))F'(u)+\varepsilon_g |u|^{p_g-2}u \quad\text{in \(\mathbb{R}^N\)}, \] where \(0<s<1<p<p_g\leq p_s^*\), \(N \geq \max\{2ps+\alpha,p^2 s\}\), \(a,b,\varepsilon_g\in (0,\infty)\), \(K(x)= |x|^{-(N-\alpha)}\), \(\alpha\in (0,N)\), and \(F\) is a doubly critical nonlinearity in the sense of the Hardy-Littlewood-Sobolev inequality. It is noteworthy that the local nonlinearity may also have critical growth. Combining Brezis-Nirenberg's method with some new ideas, we obtain the ground state solutions via the mountain pass lemma and a generalized Lions-type theorem.</description><subject>Ground state</subject><subject>Nonlinearity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvEPCih0BNWu29-PMAHgsltilNCUnNJkjx5U1A8Opldpn52J0FSihjB1LmlK5QCjBmWUaPJ1oULEHvqzVedxgcdwJwbyyud1O9J73lrZNGc4WrwTw9tx1x8ySwCHsMAL-kG3BrpZNtoJSJqo1WUgse3BnzcLgz_qHmHxaBSIZ8g5Y9VyDS71yj7eV8r25ksuGhANeMxtvQABpaZmXOKDvk7D_qA-NNT98</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Sakuma, Masaki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230810</creationdate><title>Ground states for \(p\)-fractional Choquard-type equations with critical local nonlinearity and doubly critical nonlocality</title><author>Sakuma, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28084323143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ground state</topic><topic>Nonlinearity</topic><toplevel>online_resources</toplevel><creatorcontrib>Sakuma, Masaki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuma, Masaki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ground states for \(p\)-fractional Choquard-type equations with critical local nonlinearity and doubly critical nonlocality</atitle><jtitle>arXiv.org</jtitle><date>2023-08-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider a \(p\)-fractional Choquard-type equation \[ (-\Delta)_p^s u+a|u|^{p-2}u=b(K\ast F(u))F'(u)+\varepsilon_g |u|^{p_g-2}u \quad\text{in \(\mathbb{R}^N\)}, \] where \(0<s<1<p<p_g\leq p_s^*\), \(N \geq \max\{2ps+\alpha,p^2 s\}\), \(a,b,\varepsilon_g\in (0,\infty)\), \(K(x)= |x|^{-(N-\alpha)}\), \(\alpha\in (0,N)\), and \(F\) is a doubly critical nonlinearity in the sense of the Hardy-Littlewood-Sobolev inequality. It is noteworthy that the local nonlinearity may also have critical growth. Combining Brezis-Nirenberg's method with some new ideas, we obtain the ground state solutions via the mountain pass lemma and a generalized Lions-type theorem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2808432314 |
source | Freely Accessible Journals |
subjects | Ground state Nonlinearity |
title | Ground states for \(p\)-fractional Choquard-type equations with critical local nonlinearity and doubly critical nonlocality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ground%20states%20for%20%5C(p%5C)-fractional%20Choquard-type%20equations%20with%20critical%20local%20nonlinearity%20and%20doubly%20critical%20nonlocality&rft.jtitle=arXiv.org&rft.au=Sakuma,%20Masaki&rft.date=2023-08-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2808432314%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808432314&rft_id=info:pmid/&rfr_iscdi=true |