Enhancing Supply Chain Resilience: A Machine Learning Approach for Predicting Product Availability Dates Under Disruption

The COVID 19 pandemic and ongoing political and regional conflicts have a highly detrimental impact on the global supply chain, causing significant delays in logistics operations and international shipments. One of the most pressing concerns is the uncertainty surrounding the availability dates of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Mustafa Can Camur, Sandipp Krishnan Ravi, Saleh, Shadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The COVID 19 pandemic and ongoing political and regional conflicts have a highly detrimental impact on the global supply chain, causing significant delays in logistics operations and international shipments. One of the most pressing concerns is the uncertainty surrounding the availability dates of products, which is critical information for companies to generate effective logistics and shipment plans. Therefore, accurately predicting availability dates plays a pivotal role in executing successful logistics operations, ultimately minimizing total transportation and inventory costs. We investigate the prediction of product availability dates for General Electric (GE) Gas Power's inbound shipments for gas and steam turbine service and manufacturing operations, utilizing both numerical and categorical features. We evaluate several regression models, including Simple Regression, Lasso Regression, Ridge Regression, Elastic Net, Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network models. Based on real world data, our experiments demonstrate that the tree based algorithms (i.e., RF and GBM) provide the best generalization error and outperforms all other regression models tested. We anticipate that our prediction models will assist companies in managing supply chain disruptions and reducing supply chain risks on a broader scale.
ISSN:2331-8422