Anisotropic Triebel–Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, I
This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters p ∈ ( 0 , ∞ ) , q ∈ ( 0 , ∞ ] and α ∈ R . The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified b...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2023-06, Vol.201 (2), p.375-429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters
p
∈
(
0
,
∞
)
,
q
∈
(
0
,
∞
]
and
α
∈
R
. The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified by a Peetre-type space over a one-parameter dilation group. As an application, the existence of dual molecular frames and Riesz sequences is obtained; the wavelet systems are generated by translations and anisotropic dilations of a single function, where neither the translation nor dilation parameters are required to belong to a discrete subgroup. Explicit criteria for molecules are given in terms of mild decay, moment, and smoothness conditions. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-023-01827-0 |