Anisotropic Triebel–Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, I

This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters p ∈ ( 0 , ∞ ) , q ∈ ( 0 , ∞ ] and α ∈ R . The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2023-06, Vol.201 (2), p.375-429
Hauptverfasser: Koppensteiner, Sarah, van Velthoven, Jordy Timo, Voigtlaender, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters p ∈ ( 0 , ∞ ) , q ∈ ( 0 , ∞ ] and α ∈ R . The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified by a Peetre-type space over a one-parameter dilation group. As an application, the existence of dual molecular frames and Riesz sequences is obtained; the wavelet systems are generated by translations and anisotropic dilations of a single function, where neither the translation nor dilation parameters are required to belong to a discrete subgroup. Explicit criteria for molecules are given in terms of mild decay, moment, and smoothness conditions.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-023-01827-0