An approximation algorithm for the clustered path travelling salesman problem

In this paper, we consider the clustered path travelling salesman problem. In this problem, we are given a complete graph G = ( V , E ) with an edge weight function w satisfying the triangle inequality. In addition, the vertex set V is partitioned into clusters V 1 , … , V k and s ,  t are two given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2023-05, Vol.45 (4), Article 104
Hauptverfasser: Zhang, Jiaxuan, Gao, Suogang, Hou, Bo, Liu, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the clustered path travelling salesman problem. In this problem, we are given a complete graph G = ( V , E ) with an edge weight function w satisfying the triangle inequality. In addition, the vertex set V is partitioned into clusters V 1 , … , V k and s ,  t are two given vertices of G with s ∈ V 1 and t ∈ V k . The objective of the problem is to find a minimum Hamiltonian path of G from s to t , where all vertices of each cluster are visited consecutively. In this paper, we deal with the case that the start-vertex and the end-vertex of the path on each cluster are both specified, and for it we provide a polynomial-time approximation algorithm.
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-023-01029-2