Equivariant Z-stability for single automorphisms on simple C∗-algebras with tractable trace simplices

Let A be an algebraically simple, separable, nuclear, Z -stable C ∗ -algebra for which the trace space T ( A ) is a Bauer simplex and the extremal boundary ∂ e T ( A ) has finite covering dimension. We prove that each automorphism α on A is cocycle conjugate to its tensor product with the trivial au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2023-05, Vol.304 (1)
1. Verfasser: Wouters, Lise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be an algebraically simple, separable, nuclear, Z -stable C ∗ -algebra for which the trace space T ( A ) is a Bauer simplex and the extremal boundary ∂ e T ( A ) has finite covering dimension. We prove that each automorphism α on A is cocycle conjugate to its tensor product with the trivial automorphism on the Jiang–Su algebra. At least for single automorphisms this generalizes a recent result by Gardella–Hirshberg–Vaccaro. If α is strongly outer as an action of Z , we prove it has finite Rokhlin dimension with commuting towers. As a consequence it tensorially absorbs any automorphism on the Jiang–Su algebra.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-023-03278-7