Equivariant Z-stability for single automorphisms on simple C∗-algebras with tractable trace simplices
Let A be an algebraically simple, separable, nuclear, Z -stable C ∗ -algebra for which the trace space T ( A ) is a Bauer simplex and the extremal boundary ∂ e T ( A ) has finite covering dimension. We prove that each automorphism α on A is cocycle conjugate to its tensor product with the trivial au...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2023-05, Vol.304 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
be an algebraically simple, separable, nuclear,
Z
-stable
C
∗
-algebra for which the trace space
T
(
A
) is a Bauer simplex and the extremal boundary
∂
e
T
(
A
)
has finite covering dimension. We prove that each automorphism
α
on
A
is cocycle conjugate to its tensor product with the trivial automorphism on the Jiang–Su algebra. At least for single automorphisms this generalizes a recent result by Gardella–Hirshberg–Vaccaro. If
α
is strongly outer as an action of
Z
, we prove it has finite Rokhlin dimension with commuting towers. As a consequence it tensorially absorbs any automorphism on the Jiang–Su algebra. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-023-03278-7 |