Quantitative John–Nirenberg inequalities at different scales
Given a family Z = { ‖ · ‖ Z Q } of norms or quasi-norms with uniformly bounded triangle inequality constants, where each Q is a cube in R n , we provide an abstract estimate of the form ‖ f - f Q , μ ‖ Z Q ≤ c ( μ ) ψ ( Z ) ‖ f ‖ BMO ( d μ ) for every function f ∈ BMO ( d μ ) , where μ is a doublin...
Gespeichert in:
Veröffentlicht in: | Revista matemática complutense 2023-05, Vol.36 (2), p.627-661 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a family
Z
=
{
‖
·
‖
Z
Q
}
of norms or quasi-norms with uniformly bounded triangle inequality constants, where each
Q
is a cube in
R
n
, we provide an abstract estimate of the form
‖
f
-
f
Q
,
μ
‖
Z
Q
≤
c
(
μ
)
ψ
(
Z
)
‖
f
‖
BMO
(
d
μ
)
for every function
f
∈
BMO
(
d
μ
)
, where
μ
is a doubling measure in
R
n
and
c
(
μ
)
and
ψ
(
Z
)
are positive constants depending on
μ
and
Z
, respectively. That abstract scheme allows us to recover the sharp estimate
‖
f
-
f
Q
,
μ
‖
L
p
Q
,
d
μ
(
x
)
μ
(
Q
)
≤
c
(
μ
)
p
‖
f
‖
BMO
(
d
μ
)
,
p
≥
1
for every cube
Q
and every
f
∈
BMO
(
d
μ
)
, which is known to be equivalent to the John–Nirenberg inequality, and also enables us to obtain quantitative counterparts when
L
p
is replaced by suitable strong and weak Orlicz spaces and
L
p
(
·
)
spaces. Besides the aforementioned results we also generalize [(Ombrosi in Isr J Math 238:571-591, 2020), Theorem 1.2] to the setting of doubling measures and obtain a new characterization of Muckenhoupt’s
A
∞
weights. |
---|---|
ISSN: | 1139-1138 1988-2807 |
DOI: | 10.1007/s13163-022-00427-0 |