Extension groups of tautological bundles on symmetric products of curves

We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if E ≠ O X is simple, then the natural map Ext 1 ( E , E ) → Ext 1 ( E [ n ] , E [ n ] ) is injective for every n . Along with previous results, this i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beiträge zur Algebra und Geometrie 2023-06, Vol.64 (2), p.493-530
1. Verfasser: Krug, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue 2
container_start_page 493
container_title Beiträge zur Algebra und Geometrie
container_volume 64
creator Krug, Andreas
description We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if E ≠ O X is simple, then the natural map Ext 1 ( E , E ) → Ext 1 ( E [ n ] , E [ n ] ) is injective for every n . Along with previous results, this implies that E ↦ E [ n ] defines an embedding of the moduli space of stable bundles of slope μ ∉ [ - 1 , n - 1 ] on the curve X into the moduli space of stable bundles on the symmetric product X ( n ) . The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill–Noether loci of X with the loci in the moduli space of stable bundles on X ( n ) where the dimension of the tangent space jumps. We also prove that E [ n ] is simple if E is simple.
doi_str_mv 10.1007/s13366-022-00644-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807041828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807041828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fb5b66a47362502681cead12814a07349cc33a77662f6b8f928d9bae19f2ef5d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2SbZo5RqhYIXPYdsNilbtpuaD7H_3tgVvHkaGJ73neFB6JbAPQEQD5EwxjkGSjEAr2sMZ2hGSUMwMMnO0QwIk7iWlFyiqxh3UCghxAytV1_JjrH3Y7UNPh9i5V2VdE5-8Nve6KFq89gNtuzHKh73e5tCb6pD8F026USbHD5tvEYXTg_R3vzOOXp_Wr0t13jz-vyyfNxgwzhL2LWLlnNdC8bpAiiXxFjdESpJrUGwujGGMS0E59TxVrqGyq5ptSWNo9YtOjZHd1NveeEj25jUzucwlpOKShBQE0lloehEmeBjDNapQ-j3OhwVAfVjTE3GVDGmTsYUlBCbQrHA49aGv-p_Ut-Zhm6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807041828</pqid></control><display><type>article</type><title>Extension groups of tautological bundles on symmetric products of curves</title><source>Springer Nature - Complete Springer Journals</source><creator>Krug, Andreas</creator><creatorcontrib>Krug, Andreas</creatorcontrib><description>We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if E ≠ O X is simple, then the natural map Ext 1 ( E , E ) → Ext 1 ( E [ n ] , E [ n ] ) is injective for every n . Along with previous results, this implies that E ↦ E [ n ] defines an embedding of the moduli space of stable bundles of slope μ ∉ [ - 1 , n - 1 ] on the curve X into the moduli space of stable bundles on the symmetric product X ( n ) . The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill–Noether loci of X with the loci in the moduli space of stable bundles on X ( n ) where the dimension of the tangent space jumps. We also prove that E [ n ] is simple if E is simple.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-022-00644-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Convex and Discrete Geometry ; Embedding ; Geometry ; Loci ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Beiträge zur Algebra und Geometrie, 2023-06, Vol.64 (2), p.493-530</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fb5b66a47362502681cead12814a07349cc33a77662f6b8f928d9bae19f2ef5d3</citedby><cites>FETCH-LOGICAL-c363t-fb5b66a47362502681cead12814a07349cc33a77662f6b8f928d9bae19f2ef5d3</cites><orcidid>0000-0003-1956-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-022-00644-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-022-00644-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krug, Andreas</creatorcontrib><title>Extension groups of tautological bundles on symmetric products of curves</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if E ≠ O X is simple, then the natural map Ext 1 ( E , E ) → Ext 1 ( E [ n ] , E [ n ] ) is injective for every n . Along with previous results, this implies that E ↦ E [ n ] defines an embedding of the moduli space of stable bundles of slope μ ∉ [ - 1 , n - 1 ] on the curve X into the moduli space of stable bundles on the symmetric product X ( n ) . The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill–Noether loci of X with the loci in the moduli space of stable bundles on X ( n ) where the dimension of the tangent space jumps. We also prove that E [ n ] is simple if E is simple.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Embedding</subject><subject>Geometry</subject><subject>Loci</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2SbZo5RqhYIXPYdsNilbtpuaD7H_3tgVvHkaGJ73neFB6JbAPQEQD5EwxjkGSjEAr2sMZ2hGSUMwMMnO0QwIk7iWlFyiqxh3UCghxAytV1_JjrH3Y7UNPh9i5V2VdE5-8Nve6KFq89gNtuzHKh73e5tCb6pD8F026USbHD5tvEYXTg_R3vzOOXp_Wr0t13jz-vyyfNxgwzhL2LWLlnNdC8bpAiiXxFjdESpJrUGwujGGMS0E59TxVrqGyq5ptSWNo9YtOjZHd1NveeEj25jUzucwlpOKShBQE0lloehEmeBjDNapQ-j3OhwVAfVjTE3GVDGmTsYUlBCbQrHA49aGv-p_Ut-Zhm6I</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Krug, Andreas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1956-7368</orcidid></search><sort><creationdate>20230601</creationdate><title>Extension groups of tautological bundles on symmetric products of curves</title><author>Krug, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fb5b66a47362502681cead12814a07349cc33a77662f6b8f928d9bae19f2ef5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Embedding</topic><topic>Geometry</topic><topic>Loci</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krug, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krug, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension groups of tautological bundles on symmetric products of curves</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>64</volume><issue>2</issue><spage>493</spage><epage>530</epage><pages>493-530</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if E ≠ O X is simple, then the natural map Ext 1 ( E , E ) → Ext 1 ( E [ n ] , E [ n ] ) is injective for every n . Along with previous results, this implies that E ↦ E [ n ] defines an embedding of the moduli space of stable bundles of slope μ ∉ [ - 1 , n - 1 ] on the curve X into the moduli space of stable bundles on the symmetric product X ( n ) . The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill–Noether loci of X with the loci in the moduli space of stable bundles on X ( n ) where the dimension of the tangent space jumps. We also prove that E [ n ] is simple if E is simple.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-022-00644-0</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-1956-7368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0138-4821
ispartof Beiträge zur Algebra und Geometrie, 2023-06, Vol.64 (2), p.493-530
issn 0138-4821
2191-0383
language eng
recordid cdi_proquest_journals_2807041828
source Springer Nature - Complete Springer Journals
subjects Algebra
Algebraic Geometry
Convex and Discrete Geometry
Embedding
Geometry
Loci
Mathematics
Mathematics and Statistics
Original Paper
title Extension groups of tautological bundles on symmetric products of curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20groups%20of%20tautological%20bundles%20on%20symmetric%20products%20of%20curves&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Krug,%20Andreas&rft.date=2023-06-01&rft.volume=64&rft.issue=2&rft.spage=493&rft.epage=530&rft.pages=493-530&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-022-00644-0&rft_dat=%3Cproquest_cross%3E2807041828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807041828&rft_id=info:pmid/&rfr_iscdi=true