Extension groups of tautological bundles on symmetric products of curves
We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if E ≠ O X is simple, then the natural map Ext 1 ( E , E ) → Ext 1 ( E [ n ] , E [ n ] ) is injective for every n . Along with previous results, this i...
Gespeichert in:
Veröffentlicht in: | Beiträge zur Algebra und Geometrie 2023-06, Vol.64 (2), p.493-530 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if
E
≠
O
X
is simple, then the natural map
Ext
1
(
E
,
E
)
→
Ext
1
(
E
[
n
]
,
E
[
n
]
)
is injective for every
n
. Along with previous results, this implies that
E
↦
E
[
n
]
defines an embedding of the moduli space of stable bundles of slope
μ
∉
[
-
1
,
n
-
1
]
on the curve
X
into the moduli space of stable bundles on the symmetric product
X
(
n
)
. The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill–Noether loci of
X
with the loci in the moduli space of stable bundles on
X
(
n
)
where the dimension of the tangent space jumps. We also prove that
E
[
n
]
is simple if
E
is simple. |
---|---|
ISSN: | 0138-4821 2191-0383 |
DOI: | 10.1007/s13366-022-00644-0 |