Payne–Polya–Weinberger, Hile–Protter and Yang’s Inequalities for Dirichlet Laplace Eigenvalues on Integer Lattices
In this paper, we prove some analogues of Payne–Polya–Weinberger, Hile–Protter and Yang’s inequalities for Dirichlet (discrete) Laplace eigenvalues on any subset in the integer lattice Z n . This partially answers a question posed by Chung and Oden (Pac J Math 192(2):257–273, 2000).
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2023-07, Vol.33 (7), Article 217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove some analogues of Payne–Polya–Weinberger, Hile–Protter and Yang’s inequalities for Dirichlet (discrete) Laplace eigenvalues on any subset in the integer lattice
Z
n
. This partially answers a question posed by Chung and Oden (Pac J Math 192(2):257–273, 2000). |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-023-01284-z |