Payne–Polya–Weinberger, Hile–Protter and Yang’s Inequalities for Dirichlet Laplace Eigenvalues on Integer Lattices

In this paper, we prove some analogues of Payne–Polya–Weinberger, Hile–Protter and Yang’s inequalities for Dirichlet (discrete) Laplace eigenvalues on any subset in the integer lattice Z n . This partially answers a question posed by Chung and Oden (Pac J Math 192(2):257–273, 2000).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2023-07, Vol.33 (7), Article 217
Hauptverfasser: Hua, Bobo, Lin, Yong, Su, Yanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove some analogues of Payne–Polya–Weinberger, Hile–Protter and Yang’s inequalities for Dirichlet (discrete) Laplace eigenvalues on any subset in the integer lattice Z n . This partially answers a question posed by Chung and Oden (Pac J Math 192(2):257–273, 2000).
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-023-01284-z