The Heat Kernel on the Diagonal for a Compact Metric Graph
We analyze the heat kernel associated with the Laplacian on a compact metric graph, with standard Kirchhoff–Neumann vertex conditions. An explicit formula for the heat kernel as a sum over loops, developed by Roth and Kostrykin–Potthoff–Schrader, allows for a straightforward analysis of small-time a...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2023-05, Vol.24 (5), p.1661-1680 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the heat kernel associated with the Laplacian on a compact metric graph, with standard Kirchhoff–Neumann vertex conditions. An explicit formula for the heat kernel as a sum over loops, developed by Roth and Kostrykin–Potthoff–Schrader, allows for a straightforward analysis of small-time asymptotics. We show that the restriction of the heat kernel to the diagonal satisfies a modified version of the heat equation. This observation leads to an “edge” heat trace formula, expressing the a sum over eigenfunction amplitudes on a single edge as a sum over closed loops containing that edge. The proof of this formula relies on a modified heat equation satisfied by the diagonal restriction of the heat kernel. Further study of this equation leads to explicit formulas for graphs which are symmetric about each vertex. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-022-01248-z |