The Heat Kernel on the Diagonal for a Compact Metric Graph

We analyze the heat kernel associated with the Laplacian on a compact metric graph, with standard Kirchhoff–Neumann vertex conditions. An explicit formula for the heat kernel as a sum over loops, developed by Roth and Kostrykin–Potthoff–Schrader, allows for a straightforward analysis of small-time a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2023-05, Vol.24 (5), p.1661-1680
Hauptverfasser: Borthwick, David, Harrell II, Evans M., Jones, Kenny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the heat kernel associated with the Laplacian on a compact metric graph, with standard Kirchhoff–Neumann vertex conditions. An explicit formula for the heat kernel as a sum over loops, developed by Roth and Kostrykin–Potthoff–Schrader, allows for a straightforward analysis of small-time asymptotics. We show that the restriction of the heat kernel to the diagonal satisfies a modified version of the heat equation. This observation leads to an “edge” heat trace formula, expressing the a sum over eigenfunction amplitudes on a single edge as a sum over closed loops containing that edge. The proof of this formula relies on a modified heat equation satisfied by the diagonal restriction of the heat kernel. Further study of this equation leads to explicit formulas for graphs which are symmetric about each vertex.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-022-01248-z