Asymptotic stability and sharp decay rates to the linearly stratified Boussinesq equations in horizontally periodic strip domain

We consider an initial boundary value problem of the multi-dimensional Boussinesq equations in the absence of thermal diffusion with velocity damping or velocity diffusion under the stress free boundary condition in horizontally periodic strip domain. We prove the global-in-time existence of classic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-06, Vol.62 (5), Article 141
Hauptverfasser: Jang, Juhi, Kim, Junha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 62
creator Jang, Juhi
Kim, Junha
description We consider an initial boundary value problem of the multi-dimensional Boussinesq equations in the absence of thermal diffusion with velocity damping or velocity diffusion under the stress free boundary condition in horizontally periodic strip domain. We prove the global-in-time existence of classical solutions in high order Sobolev spaces satisfying high order compatibility conditions around the linearly stratified equilibrium, the convergence of the temperature to the asymptotic profile, and sharp decay rates of the velocity field and temperature fluctuation in all intermediate norms based on spectral analysis combined with energy estimates. To the best of our knowledge, our results provide first sharp decay rates for the temperature fluctuation and the vertical velocity to the linearly stratified Boussinesq equations in all intermediate norms.
doi_str_mv 10.1007/s00526-023-02474-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807041549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807041549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8e0486159e636cea92d11a19467bb1a2fff694ae4307de9bcfcfe021710fde7d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9ehNJvPIshZfUHCj65DO3NiU6WSapNBx5U83toI7F5cLh--cA4eQawa3DKC6CwAFLzPgeTpRiWx_QiZM5DyDOi9OyQSkEBkvS3lOLkJYA7Ci5mJCvmZh3AzRRdvQEPXSdjaOVPctDSvtB9pio0fqdcRAo6NxhbSzPWrfjYlPujUWW3rvdiEkPWwpbndJdX2gtqcr5-2n66PuEj-gt649FHmbot1G2_6SnBndBbz6_VPy_vjwNn_OFq9PL_PZImtyJmNWI4i6ZIXEMi8b1JK3jGkmRVktl0xzY0wphUaRQ9WiXDamMQicVQxMi1WbT8nNMXfwbrvDENXa7XyfKhWvoQLBCiETxY9U410IHo0avN1oPyoG6mdpdVxapaXVYWm1T6b8aAoJ7j_Q_0X_4_oGrEyFng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807041549</pqid></control><display><type>article</type><title>Asymptotic stability and sharp decay rates to the linearly stratified Boussinesq equations in horizontally periodic strip domain</title><source>SpringerLink Journals</source><creator>Jang, Juhi ; Kim, Junha</creator><creatorcontrib>Jang, Juhi ; Kim, Junha</creatorcontrib><description>We consider an initial boundary value problem of the multi-dimensional Boussinesq equations in the absence of thermal diffusion with velocity damping or velocity diffusion under the stress free boundary condition in horizontally periodic strip domain. We prove the global-in-time existence of classical solutions in high order Sobolev spaces satisfying high order compatibility conditions around the linearly stratified equilibrium, the convergence of the temperature to the asymptotic profile, and sharp decay rates of the velocity field and temperature fluctuation in all intermediate norms based on spectral analysis combined with energy estimates. To the best of our knowledge, our results provide first sharp decay rates for the temperature fluctuation and the vertical velocity to the linearly stratified Boussinesq equations in all intermediate norms.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-023-02474-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic properties ; Boundary conditions ; Boundary value problems ; Boussinesq equations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Damping ; Decay rate ; Domains ; Free boundaries ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Norms ; Sobolev space ; Spectrum analysis ; Strip ; Systems Theory ; Theoretical ; Thermal diffusion ; Velocity distribution</subject><ispartof>Calculus of variations and partial differential equations, 2023-06, Vol.62 (5), Article 141</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8e0486159e636cea92d11a19467bb1a2fff694ae4307de9bcfcfe021710fde7d3</citedby><cites>FETCH-LOGICAL-c319t-8e0486159e636cea92d11a19467bb1a2fff694ae4307de9bcfcfe021710fde7d3</cites><orcidid>0000-0002-5962-6353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-023-02474-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-023-02474-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Jang, Juhi</creatorcontrib><creatorcontrib>Kim, Junha</creatorcontrib><title>Asymptotic stability and sharp decay rates to the linearly stratified Boussinesq equations in horizontally periodic strip domain</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We consider an initial boundary value problem of the multi-dimensional Boussinesq equations in the absence of thermal diffusion with velocity damping or velocity diffusion under the stress free boundary condition in horizontally periodic strip domain. We prove the global-in-time existence of classical solutions in high order Sobolev spaces satisfying high order compatibility conditions around the linearly stratified equilibrium, the convergence of the temperature to the asymptotic profile, and sharp decay rates of the velocity field and temperature fluctuation in all intermediate norms based on spectral analysis combined with energy estimates. To the best of our knowledge, our results provide first sharp decay rates for the temperature fluctuation and the vertical velocity to the linearly stratified Boussinesq equations in all intermediate norms.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Boussinesq equations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Damping</subject><subject>Decay rate</subject><subject>Domains</subject><subject>Free boundaries</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Sobolev space</subject><subject>Spectrum analysis</subject><subject>Strip</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Thermal diffusion</subject><subject>Velocity distribution</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9ehNJvPIshZfUHCj65DO3NiU6WSapNBx5U83toI7F5cLh--cA4eQawa3DKC6CwAFLzPgeTpRiWx_QiZM5DyDOi9OyQSkEBkvS3lOLkJYA7Ci5mJCvmZh3AzRRdvQEPXSdjaOVPctDSvtB9pio0fqdcRAo6NxhbSzPWrfjYlPujUWW3rvdiEkPWwpbndJdX2gtqcr5-2n66PuEj-gt649FHmbot1G2_6SnBndBbz6_VPy_vjwNn_OFq9PL_PZImtyJmNWI4i6ZIXEMi8b1JK3jGkmRVktl0xzY0wphUaRQ9WiXDamMQicVQxMi1WbT8nNMXfwbrvDENXa7XyfKhWvoQLBCiETxY9U410IHo0avN1oPyoG6mdpdVxapaXVYWm1T6b8aAoJ7j_Q_0X_4_oGrEyFng</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Jang, Juhi</creator><creator>Kim, Junha</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-5962-6353</orcidid></search><sort><creationdate>20230601</creationdate><title>Asymptotic stability and sharp decay rates to the linearly stratified Boussinesq equations in horizontally periodic strip domain</title><author>Jang, Juhi ; Kim, Junha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8e0486159e636cea92d11a19467bb1a2fff694ae4307de9bcfcfe021710fde7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Boussinesq equations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Damping</topic><topic>Decay rate</topic><topic>Domains</topic><topic>Free boundaries</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Sobolev space</topic><topic>Spectrum analysis</topic><topic>Strip</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Thermal diffusion</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Juhi</creatorcontrib><creatorcontrib>Kim, Junha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Juhi</au><au>Kim, Junha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic stability and sharp decay rates to the linearly stratified Boussinesq equations in horizontally periodic strip domain</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>62</volume><issue>5</issue><artnum>141</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We consider an initial boundary value problem of the multi-dimensional Boussinesq equations in the absence of thermal diffusion with velocity damping or velocity diffusion under the stress free boundary condition in horizontally periodic strip domain. We prove the global-in-time existence of classical solutions in high order Sobolev spaces satisfying high order compatibility conditions around the linearly stratified equilibrium, the convergence of the temperature to the asymptotic profile, and sharp decay rates of the velocity field and temperature fluctuation in all intermediate norms based on spectral analysis combined with energy estimates. To the best of our knowledge, our results provide first sharp decay rates for the temperature fluctuation and the vertical velocity to the linearly stratified Boussinesq equations in all intermediate norms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-023-02474-x</doi><orcidid>https://orcid.org/0000-0002-5962-6353</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2023-06, Vol.62 (5), Article 141
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2807041549
source SpringerLink Journals
subjects Analysis
Asymptotic properties
Boundary conditions
Boundary value problems
Boussinesq equations
Calculus of Variations and Optimal Control
Optimization
Control
Damping
Decay rate
Domains
Free boundaries
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Norms
Sobolev space
Spectrum analysis
Strip
Systems Theory
Theoretical
Thermal diffusion
Velocity distribution
title Asymptotic stability and sharp decay rates to the linearly stratified Boussinesq equations in horizontally periodic strip domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20stability%20and%20sharp%20decay%20rates%20to%20the%20linearly%20stratified%20Boussinesq%20equations%20in%20horizontally%20periodic%20strip%20domain&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Jang,%20Juhi&rft.date=2023-06-01&rft.volume=62&rft.issue=5&rft.artnum=141&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-023-02474-x&rft_dat=%3Cproquest_cross%3E2807041549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807041549&rft_id=info:pmid/&rfr_iscdi=true