Environmental Evolution of Supercell Thunderstorms Interacting with the Appalachian Mountains

The Appalachian Mountains have a considerable impact on daily weather, including severe convection, across the eastern United States. However, the impact of the Appalachians on supercells is not well understood, posing a short-term forecast challenge across the region. While case studies have been c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2023-01, Vol.38 (1), p.179-198
Hauptverfasser: Purpura, Sarah M., Davenport, Casey E., Eastin, Matthew D., McKeown, Katherine E., Riggin, Roger R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Appalachian Mountains have a considerable impact on daily weather, including severe convection, across the eastern United States. However, the impact of the Appalachians on supercells is not well understood, posing a short-term forecast challenge across the region. While case studies have been conducted, there has been no large multicase analysis of supercells interacting with complex terrain. To address this gap, we examined 62 isolated warm-season supercells that occurred within the central or southern Appalachians. Each supercell was broadly classified as “crossing” or “noncrossing” based on their maintenance of supercellular structure during interaction with significant terrain features. Rapid Update Cycle (RUC) and the Rapid Refresh (RAP) model analyses were used to identify key synoptic and mesoscale factors that distinguish between environments supportive of crossing versus noncrossing supercells. Roughly 40% of supercells were sustained crossing significant terrain. Pre-storm synoptic features common among crossing storms (relative to noncrossing storms) included a stronger polar jet, a deeper trough, a north–south-oriented cold front, a strong prefrontal low-level jet, and no wedge front leeward of the terrain. Mesoscale environmental differences were determined using near-storm model soundings collected for each supercell at three locations: upstream initiation, peak terrain, and downstream dissipation. The most significant mesoscale differences were present in the peak and downstream environments, whereby crossing storms encountered stronger low-level vertical shear, greater storm-relative helicity, and greater midlevel moisture than noncrossing storms. Such results reenforce the notion that sustained dynamical support for mesocyclones is critical to supercell maintenance when interacting with significant terrain.
ISSN:0882-8156
1520-0434
DOI:10.1175/WAF-D-22-0115.1