Pest Early Detection in Greenhouse Using Machine Learning

Greenhouses are considered to be a favorable artificial environment separated from the outside. However, pests can still exist by the same plant sources that bring the pathogen. The conditions and abundant food in a greenhouse provide a stable environment for the pest development. Normally, the natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue d'Intelligence Artificielle 2022-04, Vol.36 (2), p.209-214
Hauptverfasser: Thao, Le Quang, Cuong, Duong Duc, Anh, Nguyen Tuan, Minh, Nguyen, Tam, Nguyen Duc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Greenhouses are considered to be a favorable artificial environment separated from the outside. However, pests can still exist by the same plant sources that bring the pathogen. The conditions and abundant food in a greenhouse provide a stable environment for the pest development. Normally, the natural enemies that serve to keep pests under control outside are not present in the greenhouse, pest situations often develop in this indoor environment more rapidly and with greater severity than outdoors. Early detection and diagnosis of pests and diseases are key to managing greenhouse pests as well as selecting and applying appropriate pesticides when needed. The aim of this invention is to develop an intelligent pest early detection system using a convolutional neural network in the greenhouse. By using a pre-trained disease recognition model, we were able to perform deep transfer learning to produce a network that can predict with the precision above 90%.
ISSN:0992-499X
1958-5748
DOI:10.18280/ria.360204