Multiscale Processes Leading to Heavy Precipitation in the Eastern Nepal Himalayas

The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2023-04, Vol.24 (4), p.641-658
Hauptverfasser: Hirata, Hidetaka, Fujinami, Hatsuki, Kanamori, Hironari, Sato, Yota, Kato, Masaya, Kayastha, Rijan B., Shrestha, Madan L., Fujita, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 and a regional cloud-resolving numerical simulation. Heavy precipitation (112 mm day −1 ) was observed on 8 July 2019 at Dongang (2790 m above sea level). Most of the precipitation (81 mm) occurred during 1900–2300 local time (LT). The synoptic-scale environment is characterized by a monsoon low pressure system (LPS) over northeastern India. The LPS lifted moisture upward from the lower troposphere and then horizontally transported it into the eastern Nepal Himalayas within the middle troposphere, increasing the content of the water vapor around Dongang. A mesoscale convective system passed over Dongang around the time of the intense precipitation. The numerical simulation showed that surface heat fluxes prevailed under the middle tropospheric (∼500 hPa) southeasterly flow associated with the LPS around a mountain ridge on the upwind side of Dongang until 1900 LT, enhancing convective instability. Topographic lifting led to the release of the enhanced instability, which triggered the development of a mesoscale precipitation system. The southeasterly flow pushed the precipitation system northward, which then passed over Dongang during 2000–2200 LT, resulting in heavy precipitation. Thus, we conclude that the heavy precipitation came from the multiscale processes such as three-dimensional moisture transport driven by the LPS and the diurnal variation in heat fluxes from the land surface.
ISSN:1525-755X
1525-7541
DOI:10.1175/JHM-D-22-0080.1