Investigation of Microphysical Properties within Regions of Enhanced Dual-Frequency Ratio during the IMPACTS Field Campaign
Multifrequency airborne radars have become instrumental in evaluating the performance of satellite retrievals and furthering our understanding of ice microphysical properties. The dual-frequency ratio (DFR) is influenced by the size, density, and shape of ice particles, with higher values associated...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2022-10, Vol.79 (10), p.2773-2795 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multifrequency airborne radars have become instrumental in evaluating the performance of satellite retrievals and furthering our understanding of ice microphysical properties. The dual-frequency ratio (DFR) is influenced by the size, density, and shape of ice particles, with higher values associated with the presence of larger ice particles that may have implications regarding snowfall at the surface. The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign involves the coordination of remote sensing measurements above winter midlatitude cyclones from an ER-2 aircraft to document the fine-scale precipitation structure spanning four radar (X-, Ku-, Ka-, and W-band) frequencies and in situ microphysical measurements from a P-3 aircraft that provide additional insight into the particle size distribution (PSD) behavior and habits of the hydrometeors related to the DFR. A novel approach to identify regions of prominently higher Ku- and Ka-band DFR at the P-3 location for five coordinated flights is presented. The solid-phase mass-weighted mean diameter (
D
m
) was 58% larger, the effective density (
ρ
e
) 37% smaller, and the liquid-equivalent normalized intercept parameter (
N
w
) 74% lower in regions of prominently higher DFR. Microphysical properties within a triple-frequency framework suggest signatures consistent with aggregation and riming as in previous studies. Last, a pretrained neural network radar retrieval is used to investigate the vertical structure of microphysical properties associated with the larger DFR signatures and provides the spatial context for inferring certain microphysical processes. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS-D-21-0311.1 |