Interaction of mode-one internal solitary waves of opposite polarity in double-pycnocline stratifications
Numerical simulations of the interaction of internal solitary waves (ISWs) of opposite polarity are conducted by solving the incompressible Euler equations under the Boussinesq approximation. A double-pycnocline stratification is used. A method to determine when ISWs of both polarities exist is also...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-05, Vol.962, Article A17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerical simulations of the interaction of internal solitary waves (ISWs) of opposite polarity are conducted by solving the incompressible Euler equations under the Boussinesq approximation. A double-pycnocline stratification is used. A method to determine when ISWs of both polarities exist is also presented. The simulations confirm previous work that the interaction of waves of the same polarity are soliton-like; however, here it is shown that when a fast ISW with the same polarity as a Korteweg–de Vries (KdV) solitary wave catches up and interacts with a slower ISW of opposite polarity, the interaction can be far from soliton-like. The energy in the fast KdV-polarity wave can increase by more than a factor of 5 while the energy in the slower negative-KdV-polarity wave can decrease by 50 %. Large trailing wave trains may be generated and in some cases multiple ISWs with KdV polarity may be formed by the interaction. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2023.284 |