Interaction of mode-one internal solitary waves of opposite polarity in double-pycnocline stratifications

Numerical simulations of the interaction of internal solitary waves (ISWs) of opposite polarity are conducted by solving the incompressible Euler equations under the Boussinesq approximation. A double-pycnocline stratification is used. A method to determine when ISWs of both polarities exist is also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-05, Vol.962, Article A17
1. Verfasser: Lamb, Kevin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical simulations of the interaction of internal solitary waves (ISWs) of opposite polarity are conducted by solving the incompressible Euler equations under the Boussinesq approximation. A double-pycnocline stratification is used. A method to determine when ISWs of both polarities exist is also presented. The simulations confirm previous work that the interaction of waves of the same polarity are soliton-like; however, here it is shown that when a fast ISW with the same polarity as a Korteweg–de Vries (KdV) solitary wave catches up and interacts with a slower ISW of opposite polarity, the interaction can be far from soliton-like. The energy in the fast KdV-polarity wave can increase by more than a factor of 5 while the energy in the slower negative-KdV-polarity wave can decrease by 50 %. Large trailing wave trains may be generated and in some cases multiple ISWs with KdV polarity may be formed by the interaction.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2023.284