CNC Turning of an Additively Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations

Electron beam melting (EBM) is one example of a 3D printing technology that has shown great promise and advantages in the fabrication of medical devices such as dental and orthopedic implants. However, these products require high surface quality control to meet the specifications; thus, post-process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-04, Vol.11 (4), p.1031
Hauptverfasser: Dabwan, Abdulmajeed, Anwar, Saqib, Al-Samhan, Ali M, Alqahtani, Khaled N, Nasr, Mustafa M, Kaid, Husam, Ameen, Wadea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1031
container_title Processes
container_volume 11
creator Dabwan, Abdulmajeed
Anwar, Saqib
Al-Samhan, Ali M
Alqahtani, Khaled N
Nasr, Mustafa M
Kaid, Husam
Ameen, Wadea
description Electron beam melting (EBM) is one example of a 3D printing technology that has shown great promise and advantages in the fabrication of medical devices such as dental and orthopedic implants. However, these products require high surface quality control to meet the specifications; thus, post-processing, such as with machining processes, is required to improve surface quality. This paper investigates the influence of two-part orientations of Ti6Al4V EBM parts on the CNC machining (turning) process. The two possible EBM part orientations used in this work are across EBM layers (AL) and parallel to the EBM layer (PL). The effect of the EBM Ti6Al4V part orientations is examined on surface roughness, power consumption, chip morphology, tool flank wear, and surface morphology during the dry turning, while using uncoated carbide tools at different feed rates and cutting speeds. The results showed that the AL orientation had better surface quality control and integrity after machining than PL orientation. Using the same turning parameters, the difference between the roughness (Ra) value for AL (0.36 μm) and PL (0.79 μm) orientations is about 54%. Similarly, the power consumption in AL orientation differs by 19% from the power consumption in PL orientation. The chip thickness ratio has a difference of 23% between AL and PL orientations, and the flank wear shows a 40% difference between AL and PL orientations. It is found that, when EBM components are manufactured along across-layer (AL) orientations, the impact of part orientation during turning is minimized and machined surface integrity is improved.
doi_str_mv 10.3390/pr11041031
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806608455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747470242</galeid><sourcerecordid>A747470242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ae75baf30eb0ece42c9ce00974620f146b2247c8756bd3d614875bc350ab59913</originalsourceid><addsrcrecordid>eNptkclOwzAQhiMEElXphSewxA0pxVuc5BhFZZHKcihcI8cZF1fZcFzUvj0ORSpIeA7-ZX3zj2cmCC4JnjOW4pveEoI5wYycBBNKaRymMYlPf-nzYDYMG-xPSlgSiUmwy59ytNra1rRr1GkkW5RVlXHmE-o9epTtVkvlthYqlHdNX8MOvdhOmxrQyois5m_f710LrfOqHUwFdvRy74AWWoNyo-1S7sGiZ2s8Jp3x3EVwpmU9wOznngavt4tVfh8un-8e8mwZKiaoCyXEUSk1w1BiUMCpShX478dcUKwJFyWlPFZJHImyYpUg3MtSsQjLMkp9l9Pg6uDb2-5jC4MrNp1v15csaIKFwAmPoiO1ljUUptWds1I1ZlBFFnMfmHLqqfk_lI8KGqP8DMa5_E24PiQo2w2DBV301jTS7guCi3FnxXFn7AuaYIcX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806608455</pqid></control><display><type>article</type><title>CNC Turning of an Additively Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dabwan, Abdulmajeed ; Anwar, Saqib ; Al-Samhan, Ali M ; Alqahtani, Khaled N ; Nasr, Mustafa M ; Kaid, Husam ; Ameen, Wadea</creator><creatorcontrib>Dabwan, Abdulmajeed ; Anwar, Saqib ; Al-Samhan, Ali M ; Alqahtani, Khaled N ; Nasr, Mustafa M ; Kaid, Husam ; Ameen, Wadea</creatorcontrib><description>Electron beam melting (EBM) is one example of a 3D printing technology that has shown great promise and advantages in the fabrication of medical devices such as dental and orthopedic implants. However, these products require high surface quality control to meet the specifications; thus, post-processing, such as with machining processes, is required to improve surface quality. This paper investigates the influence of two-part orientations of Ti6Al4V EBM parts on the CNC machining (turning) process. The two possible EBM part orientations used in this work are across EBM layers (AL) and parallel to the EBM layer (PL). The effect of the EBM Ti6Al4V part orientations is examined on surface roughness, power consumption, chip morphology, tool flank wear, and surface morphology during the dry turning, while using uncoated carbide tools at different feed rates and cutting speeds. The results showed that the AL orientation had better surface quality control and integrity after machining than PL orientation. Using the same turning parameters, the difference between the roughness (Ra) value for AL (0.36 μm) and PL (0.79 μm) orientations is about 54%. Similarly, the power consumption in AL orientation differs by 19% from the power consumption in PL orientation. The chip thickness ratio has a difference of 23% between AL and PL orientations, and the flank wear shows a 40% difference between AL and PL orientations. It is found that, when EBM components are manufactured along across-layer (AL) orientations, the impact of part orientation during turning is minimized and machined surface integrity is improved.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11041031</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D printing ; Additive manufacturing ; Carbide tools ; Cutting speed ; Dental prosthetics ; Electron beam melting ; Feed rate ; Finishing ; Implant dentures ; Integrity ; Investigations ; Machining ; Mechanical properties ; Medical equipment ; Morphology ; Orientation ; Orthopaedic implants ; Orthopedics ; Power consumption ; Power management ; Prostheses ; Quality control ; Stainless steel ; Steel alloys ; Surface properties ; Surface roughness ; Surgical implants ; Thickness ratio ; Three dimensional printing ; Titanium base alloys ; Tool wear ; Topography ; Turning (machining)</subject><ispartof>Processes, 2023-04, Vol.11 (4), p.1031</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ae75baf30eb0ece42c9ce00974620f146b2247c8756bd3d614875bc350ab59913</citedby><cites>FETCH-LOGICAL-c362t-ae75baf30eb0ece42c9ce00974620f146b2247c8756bd3d614875bc350ab59913</cites><orcidid>0000-0002-6459-6267 ; 0000-0003-4833-2322 ; 0000-0001-5208-4902 ; 0000-0003-2657-163X ; 0000-0002-1638-3312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dabwan, Abdulmajeed</creatorcontrib><creatorcontrib>Anwar, Saqib</creatorcontrib><creatorcontrib>Al-Samhan, Ali M</creatorcontrib><creatorcontrib>Alqahtani, Khaled N</creatorcontrib><creatorcontrib>Nasr, Mustafa M</creatorcontrib><creatorcontrib>Kaid, Husam</creatorcontrib><creatorcontrib>Ameen, Wadea</creatorcontrib><title>CNC Turning of an Additively Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations</title><title>Processes</title><description>Electron beam melting (EBM) is one example of a 3D printing technology that has shown great promise and advantages in the fabrication of medical devices such as dental and orthopedic implants. However, these products require high surface quality control to meet the specifications; thus, post-processing, such as with machining processes, is required to improve surface quality. This paper investigates the influence of two-part orientations of Ti6Al4V EBM parts on the CNC machining (turning) process. The two possible EBM part orientations used in this work are across EBM layers (AL) and parallel to the EBM layer (PL). The effect of the EBM Ti6Al4V part orientations is examined on surface roughness, power consumption, chip morphology, tool flank wear, and surface morphology during the dry turning, while using uncoated carbide tools at different feed rates and cutting speeds. The results showed that the AL orientation had better surface quality control and integrity after machining than PL orientation. Using the same turning parameters, the difference between the roughness (Ra) value for AL (0.36 μm) and PL (0.79 μm) orientations is about 54%. Similarly, the power consumption in AL orientation differs by 19% from the power consumption in PL orientation. The chip thickness ratio has a difference of 23% between AL and PL orientations, and the flank wear shows a 40% difference between AL and PL orientations. It is found that, when EBM components are manufactured along across-layer (AL) orientations, the impact of part orientation during turning is minimized and machined surface integrity is improved.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Carbide tools</subject><subject>Cutting speed</subject><subject>Dental prosthetics</subject><subject>Electron beam melting</subject><subject>Feed rate</subject><subject>Finishing</subject><subject>Implant dentures</subject><subject>Integrity</subject><subject>Investigations</subject><subject>Machining</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Morphology</subject><subject>Orientation</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Prostheses</subject><subject>Quality control</subject><subject>Stainless steel</subject><subject>Steel alloys</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Surgical implants</subject><subject>Thickness ratio</subject><subject>Three dimensional printing</subject><subject>Titanium base alloys</subject><subject>Tool wear</subject><subject>Topography</subject><subject>Turning (machining)</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkclOwzAQhiMEElXphSewxA0pxVuc5BhFZZHKcihcI8cZF1fZcFzUvj0ORSpIeA7-ZX3zj2cmCC4JnjOW4pveEoI5wYycBBNKaRymMYlPf-nzYDYMG-xPSlgSiUmwy59ytNra1rRr1GkkW5RVlXHmE-o9epTtVkvlthYqlHdNX8MOvdhOmxrQyois5m_f710LrfOqHUwFdvRy74AWWoNyo-1S7sGiZ2s8Jp3x3EVwpmU9wOznngavt4tVfh8un-8e8mwZKiaoCyXEUSk1w1BiUMCpShX478dcUKwJFyWlPFZJHImyYpUg3MtSsQjLMkp9l9Pg6uDb2-5jC4MrNp1v15csaIKFwAmPoiO1ljUUptWds1I1ZlBFFnMfmHLqqfk_lI8KGqP8DMa5_E24PiQo2w2DBV301jTS7guCi3FnxXFn7AuaYIcX</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Dabwan, Abdulmajeed</creator><creator>Anwar, Saqib</creator><creator>Al-Samhan, Ali M</creator><creator>Alqahtani, Khaled N</creator><creator>Nasr, Mustafa M</creator><creator>Kaid, Husam</creator><creator>Ameen, Wadea</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6459-6267</orcidid><orcidid>https://orcid.org/0000-0003-4833-2322</orcidid><orcidid>https://orcid.org/0000-0001-5208-4902</orcidid><orcidid>https://orcid.org/0000-0003-2657-163X</orcidid><orcidid>https://orcid.org/0000-0002-1638-3312</orcidid></search><sort><creationdate>20230401</creationdate><title>CNC Turning of an Additively Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations</title><author>Dabwan, Abdulmajeed ; Anwar, Saqib ; Al-Samhan, Ali M ; Alqahtani, Khaled N ; Nasr, Mustafa M ; Kaid, Husam ; Ameen, Wadea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ae75baf30eb0ece42c9ce00974620f146b2247c8756bd3d614875bc350ab59913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Carbide tools</topic><topic>Cutting speed</topic><topic>Dental prosthetics</topic><topic>Electron beam melting</topic><topic>Feed rate</topic><topic>Finishing</topic><topic>Implant dentures</topic><topic>Integrity</topic><topic>Investigations</topic><topic>Machining</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Morphology</topic><topic>Orientation</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Prostheses</topic><topic>Quality control</topic><topic>Stainless steel</topic><topic>Steel alloys</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Surgical implants</topic><topic>Thickness ratio</topic><topic>Three dimensional printing</topic><topic>Titanium base alloys</topic><topic>Tool wear</topic><topic>Topography</topic><topic>Turning (machining)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabwan, Abdulmajeed</creatorcontrib><creatorcontrib>Anwar, Saqib</creatorcontrib><creatorcontrib>Al-Samhan, Ali M</creatorcontrib><creatorcontrib>Alqahtani, Khaled N</creatorcontrib><creatorcontrib>Nasr, Mustafa M</creatorcontrib><creatorcontrib>Kaid, Husam</creatorcontrib><creatorcontrib>Ameen, Wadea</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabwan, Abdulmajeed</au><au>Anwar, Saqib</au><au>Al-Samhan, Ali M</au><au>Alqahtani, Khaled N</au><au>Nasr, Mustafa M</au><au>Kaid, Husam</au><au>Ameen, Wadea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNC Turning of an Additively Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations</atitle><jtitle>Processes</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1031</spage><pages>1031-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Electron beam melting (EBM) is one example of a 3D printing technology that has shown great promise and advantages in the fabrication of medical devices such as dental and orthopedic implants. However, these products require high surface quality control to meet the specifications; thus, post-processing, such as with machining processes, is required to improve surface quality. This paper investigates the influence of two-part orientations of Ti6Al4V EBM parts on the CNC machining (turning) process. The two possible EBM part orientations used in this work are across EBM layers (AL) and parallel to the EBM layer (PL). The effect of the EBM Ti6Al4V part orientations is examined on surface roughness, power consumption, chip morphology, tool flank wear, and surface morphology during the dry turning, while using uncoated carbide tools at different feed rates and cutting speeds. The results showed that the AL orientation had better surface quality control and integrity after machining than PL orientation. Using the same turning parameters, the difference between the roughness (Ra) value for AL (0.36 μm) and PL (0.79 μm) orientations is about 54%. Similarly, the power consumption in AL orientation differs by 19% from the power consumption in PL orientation. The chip thickness ratio has a difference of 23% between AL and PL orientations, and the flank wear shows a 40% difference between AL and PL orientations. It is found that, when EBM components are manufactured along across-layer (AL) orientations, the impact of part orientation during turning is minimized and machined surface integrity is improved.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11041031</doi><orcidid>https://orcid.org/0000-0002-6459-6267</orcidid><orcidid>https://orcid.org/0000-0003-4833-2322</orcidid><orcidid>https://orcid.org/0000-0001-5208-4902</orcidid><orcidid>https://orcid.org/0000-0003-2657-163X</orcidid><orcidid>https://orcid.org/0000-0002-1638-3312</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-04, Vol.11 (4), p.1031
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2806608455
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3D printing
Additive manufacturing
Carbide tools
Cutting speed
Dental prosthetics
Electron beam melting
Feed rate
Finishing
Implant dentures
Integrity
Investigations
Machining
Mechanical properties
Medical equipment
Morphology
Orientation
Orthopaedic implants
Orthopedics
Power consumption
Power management
Prostheses
Quality control
Stainless steel
Steel alloys
Surface properties
Surface roughness
Surgical implants
Thickness ratio
Three dimensional printing
Titanium base alloys
Tool wear
Topography
Turning (machining)
title CNC Turning of an Additively Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNC%20Turning%20of%20an%20Additively%20Manufactured%20Complex%20Profile%20Ti6Al4V%20Component%20Considering%20the%20Effect%20of%20Layer%20Orientations&rft.jtitle=Processes&rft.au=Dabwan,%20Abdulmajeed&rft.date=2023-04-01&rft.volume=11&rft.issue=4&rft.spage=1031&rft.pages=1031-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11041031&rft_dat=%3Cgale_proqu%3EA747470242%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806608455&rft_id=info:pmid/&rft_galeid=A747470242&rfr_iscdi=true