Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities
The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of th...
Gespeichert in:
Veröffentlicht in: | Processes 2023-04, Vol.11 (4), p.1029 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1029 |
container_title | Processes |
container_volume | 11 |
creator | Bare, W. F. Rance Struhs, Ethan Mirkouei, Amin Overturf, Kenneth Small, Brian |
description | The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers. |
doi_str_mv | 10.3390/pr11041029 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806578239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747470240</galeid><sourcerecordid>A747470240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</originalsourceid><addsrcrecordid>eNpNUctKAzEUHUTBUrvxCwLuhKl5zHNZa6tCUZGCyyGT3ExTZpJpMqP496ZU0HsW93I5j8WJomuC54yV-K53hOCEYFqeRRNKaR6XOcnP_92X0cz7PQ5TElak2STyK9NoA-BAonttOz6A07z1SFmH3kGOQpsGve2s73fWjR5xI9GLHpxtwKANfMKR62yHHuyX8YMD3qGPowuyCi0OIxdjO4wO0JoL3epBg7-KLlSIgNnvnkbb9Wq7fIo3r4_Py8UmFowlQ1znBVN5TUlRMJnVBaFKCCpApECxlHVWq1JkXJaK1DJVBUvSFGOmAotRydk0ujnZ9s4eRvBDtbejMyGxogXO0rygrAys-YnV8BYqbZQdHBcBEjotrAGlw3-RJwGYJjgIbk8C4az3DlTVO91x910RXB17qP56YD8JLXyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806578239</pqid></control><display><type>article</type><title>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bare, W. F. Rance ; Struhs, Ethan ; Mirkouei, Amin ; Overturf, Kenneth ; Small, Brian</creator><creatorcontrib>Bare, W. F. Rance ; Struhs, Ethan ; Mirkouei, Amin ; Overturf, Kenneth ; Small, Brian</creatorcontrib><description>The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11041029</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Aquaculture ; Aquaculture industry ; Biological products ; Biomass ; Biomaterials ; Biomedical materials ; Cost control ; Economic analysis ; Environmental impact ; Environmental management ; Eutrophic environments ; Eutrophic waters ; Eutrophication ; Experiments ; Fertilizers ; Fish ; Fish-culture ; Greenhouse gases ; Laboratories ; Lignocellulose ; Micronutrients ; Nitrogen ; Nutrients ; Oncorhynchus mykiss ; Phosphorus ; Phosphorus removal ; Pollutants ; Production costs ; Rankings ; Raw materials ; Seafood ; Shadow prices ; Soil conditioners ; Soil conditions ; Sustainability ; Trout ; Water quality ; Water treatment</subject><ispartof>Processes, 2023-04, Vol.11 (4), p.1029</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</citedby><cites>FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</cites><orcidid>0000-0003-4854-4261 ; 0000-0003-0644-3120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bare, W. F. Rance</creatorcontrib><creatorcontrib>Struhs, Ethan</creatorcontrib><creatorcontrib>Mirkouei, Amin</creatorcontrib><creatorcontrib>Overturf, Kenneth</creatorcontrib><creatorcontrib>Small, Brian</creatorcontrib><title>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</title><title>Processes</title><description>The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers.</description><subject>Adsorption</subject><subject>Aquaculture</subject><subject>Aquaculture industry</subject><subject>Biological products</subject><subject>Biomass</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cost control</subject><subject>Economic analysis</subject><subject>Environmental impact</subject><subject>Environmental management</subject><subject>Eutrophic environments</subject><subject>Eutrophic waters</subject><subject>Eutrophication</subject><subject>Experiments</subject><subject>Fertilizers</subject><subject>Fish</subject><subject>Fish-culture</subject><subject>Greenhouse gases</subject><subject>Laboratories</subject><subject>Lignocellulose</subject><subject>Micronutrients</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Oncorhynchus mykiss</subject><subject>Phosphorus</subject><subject>Phosphorus removal</subject><subject>Pollutants</subject><subject>Production costs</subject><subject>Rankings</subject><subject>Raw materials</subject><subject>Seafood</subject><subject>Shadow prices</subject><subject>Soil conditioners</subject><subject>Soil conditions</subject><subject>Sustainability</subject><subject>Trout</subject><subject>Water quality</subject><subject>Water treatment</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUctKAzEUHUTBUrvxCwLuhKl5zHNZa6tCUZGCyyGT3ExTZpJpMqP496ZU0HsW93I5j8WJomuC54yV-K53hOCEYFqeRRNKaR6XOcnP_92X0cz7PQ5TElak2STyK9NoA-BAonttOz6A07z1SFmH3kGOQpsGve2s73fWjR5xI9GLHpxtwKANfMKR62yHHuyX8YMD3qGPowuyCi0OIxdjO4wO0JoL3epBg7-KLlSIgNnvnkbb9Wq7fIo3r4_Py8UmFowlQ1znBVN5TUlRMJnVBaFKCCpApECxlHVWq1JkXJaK1DJVBUvSFGOmAotRydk0ujnZ9s4eRvBDtbejMyGxogXO0rygrAys-YnV8BYqbZQdHBcBEjotrAGlw3-RJwGYJjgIbk8C4az3DlTVO91x910RXB17qP56YD8JLXyY</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bare, W. F. Rance</creator><creator>Struhs, Ethan</creator><creator>Mirkouei, Amin</creator><creator>Overturf, Kenneth</creator><creator>Small, Brian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4854-4261</orcidid><orcidid>https://orcid.org/0000-0003-0644-3120</orcidid></search><sort><creationdate>20230401</creationdate><title>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</title><author>Bare, W. F. Rance ; Struhs, Ethan ; Mirkouei, Amin ; Overturf, Kenneth ; Small, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Aquaculture</topic><topic>Aquaculture industry</topic><topic>Biological products</topic><topic>Biomass</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cost control</topic><topic>Economic analysis</topic><topic>Environmental impact</topic><topic>Environmental management</topic><topic>Eutrophic environments</topic><topic>Eutrophic waters</topic><topic>Eutrophication</topic><topic>Experiments</topic><topic>Fertilizers</topic><topic>Fish</topic><topic>Fish-culture</topic><topic>Greenhouse gases</topic><topic>Laboratories</topic><topic>Lignocellulose</topic><topic>Micronutrients</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Oncorhynchus mykiss</topic><topic>Phosphorus</topic><topic>Phosphorus removal</topic><topic>Pollutants</topic><topic>Production costs</topic><topic>Rankings</topic><topic>Raw materials</topic><topic>Seafood</topic><topic>Shadow prices</topic><topic>Soil conditioners</topic><topic>Soil conditions</topic><topic>Sustainability</topic><topic>Trout</topic><topic>Water quality</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bare, W. F. Rance</creatorcontrib><creatorcontrib>Struhs, Ethan</creatorcontrib><creatorcontrib>Mirkouei, Amin</creatorcontrib><creatorcontrib>Overturf, Kenneth</creatorcontrib><creatorcontrib>Small, Brian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bare, W. F. Rance</au><au>Struhs, Ethan</au><au>Mirkouei, Amin</au><au>Overturf, Kenneth</au><au>Small, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</atitle><jtitle>Processes</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1029</spage><pages>1029-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11041029</doi><orcidid>https://orcid.org/0000-0003-4854-4261</orcidid><orcidid>https://orcid.org/0000-0003-0644-3120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-04, Vol.11 (4), p.1029 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2806578239 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Adsorption Aquaculture Aquaculture industry Biological products Biomass Biomaterials Biomedical materials Cost control Economic analysis Environmental impact Environmental management Eutrophic environments Eutrophic waters Eutrophication Experiments Fertilizers Fish Fish-culture Greenhouse gases Laboratories Lignocellulose Micronutrients Nitrogen Nutrients Oncorhynchus mykiss Phosphorus Phosphorus removal Pollutants Production costs Rankings Raw materials Seafood Shadow prices Soil conditioners Soil conditions Sustainability Trout Water quality Water treatment |
title | Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Biomaterials%20for%20Reducing%20Phosphorus%20and%20Nitrogen%20Levels%20from%20Downstream%20Water%20of%20Aquaculture%20Facilities&rft.jtitle=Processes&rft.au=Bare,%20W.%20F.%20Rance&rft.date=2023-04-01&rft.volume=11&rft.issue=4&rft.spage=1029&rft.pages=1029-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11041029&rft_dat=%3Cgale_proqu%3EA747470240%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806578239&rft_id=info:pmid/&rft_galeid=A747470240&rfr_iscdi=true |