Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities

The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-04, Vol.11 (4), p.1029
Hauptverfasser: Bare, W. F. Rance, Struhs, Ethan, Mirkouei, Amin, Overturf, Kenneth, Small, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1029
container_title Processes
container_volume 11
creator Bare, W. F. Rance
Struhs, Ethan
Mirkouei, Amin
Overturf, Kenneth
Small, Brian
description The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers.
doi_str_mv 10.3390/pr11041029
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806578239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747470240</galeid><sourcerecordid>A747470240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</originalsourceid><addsrcrecordid>eNpNUctKAzEUHUTBUrvxCwLuhKl5zHNZa6tCUZGCyyGT3ExTZpJpMqP496ZU0HsW93I5j8WJomuC54yV-K53hOCEYFqeRRNKaR6XOcnP_92X0cz7PQ5TElak2STyK9NoA-BAonttOz6A07z1SFmH3kGOQpsGve2s73fWjR5xI9GLHpxtwKANfMKR62yHHuyX8YMD3qGPowuyCi0OIxdjO4wO0JoL3epBg7-KLlSIgNnvnkbb9Wq7fIo3r4_Py8UmFowlQ1znBVN5TUlRMJnVBaFKCCpApECxlHVWq1JkXJaK1DJVBUvSFGOmAotRydk0ujnZ9s4eRvBDtbejMyGxogXO0rygrAys-YnV8BYqbZQdHBcBEjotrAGlw3-RJwGYJjgIbk8C4az3DlTVO91x910RXB17qP56YD8JLXyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806578239</pqid></control><display><type>article</type><title>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bare, W. F. Rance ; Struhs, Ethan ; Mirkouei, Amin ; Overturf, Kenneth ; Small, Brian</creator><creatorcontrib>Bare, W. F. Rance ; Struhs, Ethan ; Mirkouei, Amin ; Overturf, Kenneth ; Small, Brian</creatorcontrib><description>The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11041029</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Aquaculture ; Aquaculture industry ; Biological products ; Biomass ; Biomaterials ; Biomedical materials ; Cost control ; Economic analysis ; Environmental impact ; Environmental management ; Eutrophic environments ; Eutrophic waters ; Eutrophication ; Experiments ; Fertilizers ; Fish ; Fish-culture ; Greenhouse gases ; Laboratories ; Lignocellulose ; Micronutrients ; Nitrogen ; Nutrients ; Oncorhynchus mykiss ; Phosphorus ; Phosphorus removal ; Pollutants ; Production costs ; Rankings ; Raw materials ; Seafood ; Shadow prices ; Soil conditioners ; Soil conditions ; Sustainability ; Trout ; Water quality ; Water treatment</subject><ispartof>Processes, 2023-04, Vol.11 (4), p.1029</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</citedby><cites>FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</cites><orcidid>0000-0003-4854-4261 ; 0000-0003-0644-3120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bare, W. F. Rance</creatorcontrib><creatorcontrib>Struhs, Ethan</creatorcontrib><creatorcontrib>Mirkouei, Amin</creatorcontrib><creatorcontrib>Overturf, Kenneth</creatorcontrib><creatorcontrib>Small, Brian</creatorcontrib><title>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</title><title>Processes</title><description>The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers.</description><subject>Adsorption</subject><subject>Aquaculture</subject><subject>Aquaculture industry</subject><subject>Biological products</subject><subject>Biomass</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cost control</subject><subject>Economic analysis</subject><subject>Environmental impact</subject><subject>Environmental management</subject><subject>Eutrophic environments</subject><subject>Eutrophic waters</subject><subject>Eutrophication</subject><subject>Experiments</subject><subject>Fertilizers</subject><subject>Fish</subject><subject>Fish-culture</subject><subject>Greenhouse gases</subject><subject>Laboratories</subject><subject>Lignocellulose</subject><subject>Micronutrients</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Oncorhynchus mykiss</subject><subject>Phosphorus</subject><subject>Phosphorus removal</subject><subject>Pollutants</subject><subject>Production costs</subject><subject>Rankings</subject><subject>Raw materials</subject><subject>Seafood</subject><subject>Shadow prices</subject><subject>Soil conditioners</subject><subject>Soil conditions</subject><subject>Sustainability</subject><subject>Trout</subject><subject>Water quality</subject><subject>Water treatment</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUctKAzEUHUTBUrvxCwLuhKl5zHNZa6tCUZGCyyGT3ExTZpJpMqP496ZU0HsW93I5j8WJomuC54yV-K53hOCEYFqeRRNKaR6XOcnP_92X0cz7PQ5TElak2STyK9NoA-BAonttOz6A07z1SFmH3kGOQpsGve2s73fWjR5xI9GLHpxtwKANfMKR62yHHuyX8YMD3qGPowuyCi0OIxdjO4wO0JoL3epBg7-KLlSIgNnvnkbb9Wq7fIo3r4_Py8UmFowlQ1znBVN5TUlRMJnVBaFKCCpApECxlHVWq1JkXJaK1DJVBUvSFGOmAotRydk0ujnZ9s4eRvBDtbejMyGxogXO0rygrAys-YnV8BYqbZQdHBcBEjotrAGlw3-RJwGYJjgIbk8C4az3DlTVO91x910RXB17qP56YD8JLXyY</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bare, W. F. Rance</creator><creator>Struhs, Ethan</creator><creator>Mirkouei, Amin</creator><creator>Overturf, Kenneth</creator><creator>Small, Brian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4854-4261</orcidid><orcidid>https://orcid.org/0000-0003-0644-3120</orcidid></search><sort><creationdate>20230401</creationdate><title>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</title><author>Bare, W. F. Rance ; Struhs, Ethan ; Mirkouei, Amin ; Overturf, Kenneth ; Small, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b783f7b21883d6b812fcc2cec5e20ddb6bf9c6ad9f1bd5f83455003ffcc32da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Aquaculture</topic><topic>Aquaculture industry</topic><topic>Biological products</topic><topic>Biomass</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cost control</topic><topic>Economic analysis</topic><topic>Environmental impact</topic><topic>Environmental management</topic><topic>Eutrophic environments</topic><topic>Eutrophic waters</topic><topic>Eutrophication</topic><topic>Experiments</topic><topic>Fertilizers</topic><topic>Fish</topic><topic>Fish-culture</topic><topic>Greenhouse gases</topic><topic>Laboratories</topic><topic>Lignocellulose</topic><topic>Micronutrients</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Oncorhynchus mykiss</topic><topic>Phosphorus</topic><topic>Phosphorus removal</topic><topic>Pollutants</topic><topic>Production costs</topic><topic>Rankings</topic><topic>Raw materials</topic><topic>Seafood</topic><topic>Shadow prices</topic><topic>Soil conditioners</topic><topic>Soil conditions</topic><topic>Sustainability</topic><topic>Trout</topic><topic>Water quality</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bare, W. F. Rance</creatorcontrib><creatorcontrib>Struhs, Ethan</creatorcontrib><creatorcontrib>Mirkouei, Amin</creatorcontrib><creatorcontrib>Overturf, Kenneth</creatorcontrib><creatorcontrib>Small, Brian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bare, W. F. Rance</au><au>Struhs, Ethan</au><au>Mirkouei, Amin</au><au>Overturf, Kenneth</au><au>Small, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities</atitle><jtitle>Processes</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1029</spage><pages>1029-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11041029</doi><orcidid>https://orcid.org/0000-0003-4854-4261</orcidid><orcidid>https://orcid.org/0000-0003-0644-3120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-04, Vol.11 (4), p.1029
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2806578239
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Adsorption
Aquaculture
Aquaculture industry
Biological products
Biomass
Biomaterials
Biomedical materials
Cost control
Economic analysis
Environmental impact
Environmental management
Eutrophic environments
Eutrophic waters
Eutrophication
Experiments
Fertilizers
Fish
Fish-culture
Greenhouse gases
Laboratories
Lignocellulose
Micronutrients
Nitrogen
Nutrients
Oncorhynchus mykiss
Phosphorus
Phosphorus removal
Pollutants
Production costs
Rankings
Raw materials
Seafood
Shadow prices
Soil conditioners
Soil conditions
Sustainability
Trout
Water quality
Water treatment
title Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Biomaterials%20for%20Reducing%20Phosphorus%20and%20Nitrogen%20Levels%20from%20Downstream%20Water%20of%20Aquaculture%20Facilities&rft.jtitle=Processes&rft.au=Bare,%20W.%20F.%20Rance&rft.date=2023-04-01&rft.volume=11&rft.issue=4&rft.spage=1029&rft.pages=1029-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11041029&rft_dat=%3Cgale_proqu%3EA747470240%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806578239&rft_id=info:pmid/&rft_galeid=A747470240&rfr_iscdi=true