Engineered Biomaterials for Reducing Phosphorus and Nitrogen Levels from Downstream Water of Aquaculture Facilities
The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of th...
Gespeichert in:
Veröffentlicht in: | Processes 2023-04, Vol.11 (4), p.1029 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The United States (U.S.) has a nearly USD 17 billion seafood trade deficit annually. However, the U.S. aquaculture industry faces strict micronutrient (e.g., phosphorus and nitrogen) level mandates that negatively impact fish production, especially for the state of Idaho, which produces 70–75% of the nation’s rainbow trout. This study investigates the sustainability benefits of producing engineered biomaterials from lignocellulosic-based feedstocks near collection sites via portable biorefineries for use by fish farms to reduce eutrophication (oversupply of micronutrients) impacts. In this study, sustainability assessments are performed on a case study in southern Idaho, the largest U.S. commercial producer of rainbow trout. The results show that 20 and 60 min of water treatment, using small particle size biomaterial from lodgepole pine, has the highest total phosphorus removal rate, at 150–180 g of phosphorus per 1 metric ton of engineered biomaterials. The results of techno-economic and environmental impacts studies indicate that pinewood-based biomaterials production cost ranges from USD 213 USD 242 per ton and reduces the eutrophication potential by 5–17 kg PO4eq/ton. Additionally, the environmental impact results show that the total greenhouse gas emission for biomaterial production is 47–54 kg CO2eq/ton; however, the used biomaterials after water treatment can be sold for around USD 850 per ton as nutrient-rich soil conditioners. This study concluded that engineered biomaterials from lignocellulosic-based feedstocks could be a sustainable solution to the challenge that aquaculture faces, particularly capturing micronutrients from eutrophic water and reusing them as fertilizers. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr11041029 |