A Hybrid Image Segmentation Method for Accurate Measurement of Urban Environments

In the field of urban environment analysis research, image segmentation technology that groups important objects in the urban landscape image in pixel units has been the subject of increased attention. However, since a dataset consisting of a huge amount of image and label pairs is required to utili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-04, Vol.12 (8), p.1845
Hauptverfasser: Kim, Hyungjoon, Lee, Jae, Lee, Suan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the field of urban environment analysis research, image segmentation technology that groups important objects in the urban landscape image in pixel units has been the subject of increased attention. However, since a dataset consisting of a huge amount of image and label pairs is required to utilize this technology, in most cases, a model trained with a dataset having similar characteristics is used for analysis, and as a result, the quality of segmentation is poor. To overcome this limitation, we propose a hybrid model to leverage the strengths of each model in predicting specific classes. In particular, we first introduce a pre-processing operation to reduce the differences between the collected urban dataset and public dataset. Subsequently, we train several segmentation models with a pre-processed dataset then, based on the weight rule, the segmentation results are fused to create one segmentation map. To evaluate our proposal, we collected Google Street View images that do not have any labels and trained a model using the cityscapes dataset which contains foregrounds similar to the collected images. We quantitatively assessed its performance using the cityscapes dataset with ground truths and qualitatively evaluated the results of GSV data segmentation through user studies. Our approach outperformed existing methods and demonstrated the potential for accurate and efficient urban environment analysis using computer vision technology.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12081845