Rate of escape of random walks on free products

Suppose we are given the free product V of a finite family of finite or countable sets (Vi)i∈∮ and probability measures on each Vi, which govern random walks on it. We consider a transient random walk on the free product arising naturally from the random walks on the Vi. We prove the existence of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 2007-08, Vol.83 (1), p.31-54
1. Verfasser: Gilch, Lorenz A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose we are given the free product V of a finite family of finite or countable sets (Vi)i∈∮ and probability measures on each Vi, which govern random walks on it. We consider a transient random walk on the free product arising naturally from the random walks on the Vi. We prove the existence of the rate of escape with respect to the block length, that is, the speed at which the random walk escapes to infinity, and furthermore we compute formulae for it. For this purpose, we present three different techniques providing three different, equivalent formulae.
ISSN:1446-7887
1446-8107
DOI:10.1017/S1446788700036375