Deep UV transparent conductive Si-doped Ga2O3 thin films grown on Al2O3 substrates

β-Ga2O3 is attracting considerable attention for applications in power electronics and deep ultraviolet (DUV) optoelectronics owing to the ultra-wide bandgap of 4.85 eV and amendable n-type conductivity. In this work, we report the achievement of Si-doped β-Ga2O3 (Si:β-Ga2O3) thin films grown on vic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-04, Vol.122 (17)
Hauptverfasser: Yang, Zhenni, Xu, Xiangyu, Wang, Yan, Kuang, Siliang, Chen, Duanyang, Qi, Hongji, Zhang, K. H. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:β-Ga2O3 is attracting considerable attention for applications in power electronics and deep ultraviolet (DUV) optoelectronics owing to the ultra-wide bandgap of 4.85 eV and amendable n-type conductivity. In this work, we report the achievement of Si-doped β-Ga2O3 (Si:β-Ga2O3) thin films grown on vicinal α-Al2O3 (0001) substrates with high electrical conductivity and DUV transparency of promising potential as transparent electrodes. The use of Al2O3 substrates with miscut angles promotes step-flow growth mode, leading to substantial improvement of crystalline quality and electrical properties of the Si:β-Ga2O3 films. A high conductivity of 37 S·cm−1 and average DUV transparency of 85% have been achieved for 0.5% Si-doped film grown on a 6° miscut substrate. High-resolution x-ray and ultraviolet photoemission spectroscopy were further used to elucidate the surface electronic properties of the grown Si:β-Ga2O3 films. An upward surface band bending was found at the surface region of Si:β-Ga2O3 films. Interestingly, all the Si:β-Ga2O3 films have a very low work function of approximately 3.3 eV, which makes Si:β-Ga2O3 suitable materials for efficient electron injection. The present Si:β-Ga2O3 films with high conductivity, DUV transparency, and low work function would be useful as the DUV transparent electrode to develop advanced DUV optoelectronic devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0147004