Hydroclimate Drives Seasonal Riverine Export Across a Gradient of Glacierized High‐Latitude Coastal Catchments

Glacierized coastal catchments of the Gulf of Alaska (GoA) are undergoing rapid hydrologic fluctuations in response to climate change. These catchments deliver dissolved and suspended inorganic and organic matter to nearshore marine environments, however, these glacierized coastal catchments are rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2023-04, Vol.59 (4), p.n/a
Hauptverfasser: Jenckes, J., Munk, L. A., Ibarra, D. E., Boutt, D. F., Fellman, J., Hood, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glacierized coastal catchments of the Gulf of Alaska (GoA) are undergoing rapid hydrologic fluctuations in response to climate change. These catchments deliver dissolved and suspended inorganic and organic matter to nearshore marine environments, however, these glacierized coastal catchments are relatively understudied and little is known about total solute and particulate fluxes to the ocean. We present hydrologic, physical, and geochemical data collected during April–October 2019–2021 from 10 streams along gradients of glacial fed to non‐glacial (i.e., precipitation) fed, in one Southcentral and one Southeast Alaska region. Hydrologic data reveal that glaciers drive the seasonal runoff patterns. The ẟ18O signature and specific conductance show distinctive seasonal variations in stream water sources between the study regions apparently due to the large amounts of rain in Southeast Alaska. Total dissolved solids concentrations and yields were elevated in the Southcentral region, due to lithologic influence on dissolved loads, however, the hydroclimate is the primary driver of the timing of dissolved and suspended yields. We show the yields of dissolved organic carbon is higher and that the δ13CPOC is enriched in the Southeast streams illustrating contrasts in organic carbon export across the GoA. Finally, we illustrate how future yields of solutes and sediments to the GoA may change as watersheds evolve from glacial influenced to precipitation dominated. This integrated analysis provides insights into how watershed characteristics beyond glacier coverage control properties of freshwater inputs to the GoA and the importance of expanding study regions to multiple hydroclimate regimes. Key Points Solute and sediment yields are dominated by the presence of glaciers in watersheds; however, hydroclimate dictates seasonal cycles Glacial recession and increased rain across the Gulf of Alaska will alter the timing and magnitude of solute and sediment flux to the ocean Watershed characteristics such as wetland area, vegetated area, and lithology impart strong controls on solute and sediment yields
ISSN:0043-1397
1944-7973
DOI:10.1029/2022WR033305