Small data solutions for the Vlasov-Poisson system with a trapping potential

In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the unst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Anibal Velozo Ruiz, Renato Velozo Ruiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Anibal Velozo Ruiz
Renato Velozo Ruiz
description In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the unstable trapping potential \(\frac{-|x|^2}{2}\) in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2805744135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805744135</sourcerecordid><originalsourceid>FETCH-proquest_journals_28057441353</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F9Kktd1FcXAQFNcSMLUpaS72ropvr4MP4PQP3z8TidI6z-pCqYVIiXoppdpUqix1Io7nwXgPN8MGCP3EDgNBiyNwZ-HqDeEzO6EjwgD0JrYDvBx3YIBHE6MLd4jINrAzfiXmrfFk01-XYr3fXbaHLI74mCxx0-M0hi81qpZlVRS5LvV_1weDyD30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805744135</pqid></control><display><type>article</type><title>Small data solutions for the Vlasov-Poisson system with a trapping potential</title><source>Free E- Journals</source><creator>Anibal Velozo Ruiz ; Renato Velozo Ruiz</creator><creatorcontrib>Anibal Velozo Ruiz ; Renato Velozo Ruiz</creatorcontrib><description>In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the unstable trapping potential \(\frac{-|x|^2}{2}\) in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decay rate ; Estimates ; Fields (mathematics) ; Trapping</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Anibal Velozo Ruiz</creatorcontrib><creatorcontrib>Renato Velozo Ruiz</creatorcontrib><title>Small data solutions for the Vlasov-Poisson system with a trapping potential</title><title>arXiv.org</title><description>In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the unstable trapping potential \(\frac{-|x|^2}{2}\) in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field.</description><subject>Decay rate</subject><subject>Estimates</subject><subject>Fields (mathematics)</subject><subject>Trapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F9Kktd1FcXAQFNcSMLUpaS72ropvr4MP4PQP3z8TidI6z-pCqYVIiXoppdpUqix1Io7nwXgPN8MGCP3EDgNBiyNwZ-HqDeEzO6EjwgD0JrYDvBx3YIBHE6MLd4jINrAzfiXmrfFk01-XYr3fXbaHLI74mCxx0-M0hi81qpZlVRS5LvV_1weDyD30</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Anibal Velozo Ruiz</creator><creator>Renato Velozo Ruiz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230424</creationdate><title>Small data solutions for the Vlasov-Poisson system with a trapping potential</title><author>Anibal Velozo Ruiz ; Renato Velozo Ruiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28057441353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decay rate</topic><topic>Estimates</topic><topic>Fields (mathematics)</topic><topic>Trapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Anibal Velozo Ruiz</creatorcontrib><creatorcontrib>Renato Velozo Ruiz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anibal Velozo Ruiz</au><au>Renato Velozo Ruiz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Small data solutions for the Vlasov-Poisson system with a trapping potential</atitle><jtitle>arXiv.org</jtitle><date>2023-04-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the unstable trapping potential \(\frac{-|x|^2}{2}\) in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2805744135
source Free E- Journals
subjects Decay rate
Estimates
Fields (mathematics)
Trapping
title Small data solutions for the Vlasov-Poisson system with a trapping potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Small%20data%20solutions%20for%20the%20Vlasov-Poisson%20system%20with%20a%20trapping%20potential&rft.jtitle=arXiv.org&rft.au=Anibal%20Velozo%20Ruiz&rft.date=2023-04-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2805744135%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805744135&rft_id=info:pmid/&rfr_iscdi=true