Small data solutions for the Vlasov-Poisson system with a trapping potential
In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the unst...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the unstable trapping potential \(\frac{-|x|^2}{2}\) in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field. |
---|---|
ISSN: | 2331-8422 |