Quasicentral Modulus and Self-similar Sets: A Supplementary Result to Voiculescu’s Work

In his recent work, Voiculescu generalized his remarkable formula for the quasicentral modulus of a commuting n -tuple of hermitian operators with respect to the ( n , 1)-Lorentz ideal to the case where its spectrum is contained in a Cantor-like self-similar set in a certain class. In this note, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2023-06, Vol.95 (2), Article 13
Hauptverfasser: Ikeda, Kozo, Izumi, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In his recent work, Voiculescu generalized his remarkable formula for the quasicentral modulus of a commuting n -tuple of hermitian operators with respect to the ( n , 1)-Lorentz ideal to the case where its spectrum is contained in a Cantor-like self-similar set in a certain class. In this note, we treat general self-similar sets satisfying the open set condition, and obtain lower and upper bounds of the quasicentral modulus. Our proof shows that Voiculescu’s formula holds for a class of self-similar sets including the Sierpinski gasket and the Sierpinski carpet.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-023-02734-7