Design and Analysis of a High Gain Millimeter-Wave Antenna Array for Dual Purpose Applications
Since higher band of 5G handles the frequencies from 24 to 47 GHz near the basement of the millimeter-wave band and also Ka-band which uses the frequency from 27 to 40 GHz for satellite communication, in this work an antenna array is designed at the operating frequency of 31 GHz which is used for bo...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2023-05, Vol.130 (1), p.593-607 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since higher band of 5G handles the frequencies from 24 to 47 GHz near the basement of the millimeter-wave band and also Ka-band which uses the frequency from 27 to 40 GHz for satellite communication, in this work an antenna array is designed at the operating frequency of 31 GHz which is used for both of the applications. But, as this frequency falls in the millimeter-wave range, absorption of the millimeter-wave energy by water vapor to overcome the atmospheric attenuation is high in long-range communication systems and also it severely suffers from path loss during propagation because of the high frequency. To overcome these problems, a high gain antenna is essentially required. In this paper, a high gain 1 × 4 linear antenna array is designed using High Frequency SS simulation software at 31 GHz with the microstrip patch elements with Roggers/RT duroid 5880 as the substrate using the corporate feed technique. This proposed antenna is fabricated and gives a gain of 14.76 dB which is large as compared to other structures of antenna arrays with the same and more number of elements and obtains a return loss of − 43.12 dB at the 31 GHz operating frequency. A single patch antenna and 1 × 2 array antennas are also designed and fabricated. Simulated results of the three are verified with the measured results. |
---|---|
ISSN: | 0929-6212 1572-834X |
DOI: | 10.1007/s11277-023-10300-y |