Endperiodic maps via pseudo-Anosov flows

We show that every atoroidal endperiodic map of an infinite-type surface can be obtained from a depth one foliation in a fibered hyperbolic 3-manifold, reversing a well-known construction of Thurston. This can be done almost-transversely to the canonical suspension flow, and as a consequence we reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Landry, Michael P, Minsky, Yair N, Taylor, Samuel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every atoroidal endperiodic map of an infinite-type surface can be obtained from a depth one foliation in a fibered hyperbolic 3-manifold, reversing a well-known construction of Thurston. This can be done almost-transversely to the canonical suspension flow, and as a consequence we recover the Handel-Miller laminations of such a map directly from the fibered structure. We also generalize from the finite-genus case the relation between topological entropy, growth rates of periodic points, and growth rates of intersection numbers of curves. Fixing the manifold and varying the depth one foliations, we obtain a description of the Cantwell-Conlon foliation cones and a proof that the entropy function on these cones is continuous and convex.
ISSN:2331-8422