On the Fischer matrices of a group of shape 21+2n + :G

In this paper, the Fischer matrices of the maximal subgroup G = 21+8+ : (U4(2):2) of U6(2):2 will be derived from the Fischer matrices of the quotient group Q = G/Z(21+8+) = 28 : (U4(2):2), where Z(21+8+) denotes the center of the extra-special 2-group 21+8+. Using this approach, the Fischer matrice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista colombiana de matemáticas 2023-04, Vol.56 (2), p.189-211
1. Verfasser: Prins, Abraham Love
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the Fischer matrices of the maximal subgroup G = 21+8+ : (U4(2):2) of U6(2):2 will be derived from the Fischer matrices of the quotient group Q = G/Z(21+8+) = 28 : (U4(2):2), where Z(21+8+) denotes the center of the extra-special 2-group 21+8+. Using this approach, the Fischer matrices and associated ordinary character table of G are computed in an elegantly simple manner. This approach can be used to compute the ordinary character table of any split extension group of the form 21+2n+ :G, n ∈ N, provided the ordinary irreducible characters of 21+2n+ extend to ordinary irreducible characters of its inertia subgroups in 21+2n+:G and also that the Fischer matrices M(gi) of the quotient group 21+2n+ :G/Z(21+2n+) = 22n:G are known for each class representative gi in G.
ISSN:0034-7426
2357-4100
DOI:10.15446/recolma.v56n2.108379