On the Fischer matrices of a group of shape 21+2n + :G
In this paper, the Fischer matrices of the maximal subgroup G = 21+8+ : (U4(2):2) of U6(2):2 will be derived from the Fischer matrices of the quotient group Q = G/Z(21+8+) = 28 : (U4(2):2), where Z(21+8+) denotes the center of the extra-special 2-group 21+8+. Using this approach, the Fischer matrice...
Gespeichert in:
Veröffentlicht in: | Revista colombiana de matemáticas 2023-04, Vol.56 (2), p.189-211 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the Fischer matrices of the maximal subgroup G = 21+8+ : (U4(2):2) of U6(2):2 will be derived from the Fischer matrices of the quotient group Q = G/Z(21+8+) = 28 : (U4(2):2), where Z(21+8+) denotes the center of the extra-special 2-group 21+8+. Using this approach, the Fischer matrices and associated ordinary character table of G are computed in an elegantly simple manner. This approach can be used to compute the ordinary character table of any split extension group of the form 21+2n+ :G, n ∈ N, provided the ordinary irreducible characters of 21+2n+ extend to ordinary irreducible characters of its inertia subgroups in 21+2n+:G and also that the Fischer matrices M(gi) of the quotient group 21+2n+ :G/Z(21+2n+) = 22n:G are known for each class representative gi in G. |
---|---|
ISSN: | 0034-7426 2357-4100 |
DOI: | 10.15446/recolma.v56n2.108379 |