A Self-Latching MEMS Optical Interrupter With Status Monitoring for Laser Initiation System

A novel self-latching MEMS optical interrupter with status monitoring is proposed to enhance the safety of laser initiation system (LIS) by preventing long-term heat accumulation and reducing response time. The electrothermal-actuated interrupter consists of an optical fiber alignment actuator, a po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-05, Vol.70 (5), p.1-8
Hauptverfasser: Kong, Xiaoyu, Cao, Yun, Zhu, Hengbo, Nie, Weirong, Xi, Zhanwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel self-latching MEMS optical interrupter with status monitoring is proposed to enhance the safety of laser initiation system (LIS) by preventing long-term heat accumulation and reducing response time. The electrothermal-actuated interrupter consists of an optical fiber alignment actuator, a positive latching actuator (PLA), and a reverse blocking actuator, each coupled with a status monitoring unit. The PLA is equipped with an interlock mechanism for self-latching capability. The interrupter's operating state is monitored using cantilever beams that function as travel switches. The interrupters are fabricated using deep reactive ion etching (DRIE) on silicon-on-insulator (SOI) wafers. Experiments are conducted to study the behavior of the proposed interrupter, which demonstrates the successful implementation of its self-latching and status-monitoring features. The interrupter has a switching time of less than 64 ms and exhibits an optical efficiency ranging from 63% to 68% (1.67-1.97-dB insertion loss) with a maximum power transfer of 865 mW from a 1272-mW input.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2023.3255159