Geometric Aspects of Shape Optimization
We present a review of known results in shape optimization from the point of view of Geometric Analysis. This paper is devoted to the mathematical aspects of the shape optimization theory. We focus on the theory of gradient flows of objective functions and their regularizations. Shape optimization i...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2023-07, Vol.33 (7), Article 206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a review of known results in shape optimization from the point of view of Geometric Analysis. This paper is devoted to the mathematical aspects of the shape optimization theory. We focus on the theory of gradient flows of objective functions and their regularizations. Shape optimization is a part of calculus of variations which uses the geometry. Shape optimization is also related to the free boundary problems in the theory of Partial Differential Equations. We consider smooth perturbations of geometrical domains in order to develop the shape calculus for the analysis of shape optimization problems. There are many applications of such a framework, in solid and fluid mechanics as well as in the solution of inverse problems. For the sake of simplicity we consider model problems, in principle in two spatial dimensions. However, the methods presented are used as well in three spatial dimensions. We present a result on the convergence of the shape gradient method for a model problem. To our best knowledge it is the first result of convergence in shape optimization. The complete proofs of some results are presented in report (Plotnikov and Sokolowski, Gradient flow for Kohn–Vogelius functional). |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-023-01252-7 |