Uncovering doubly charged scalars with dominant three-body decays using machine learning
We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Flacke, Thomas Jeong Han Kim Kunkel, Manuel Ko, Pyungwon Pi, Jun Seung Porod, Werner Schwarze, Leonard |
description | We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2803672068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803672068</sourcerecordid><originalsourceid>FETCH-proquest_journals_28036720683</originalsourceid><addsrcrecordid>eNqNjk0KwjAYRIMgWLR3CLguxMTW7kXxAAruSkw-m5Q00fwovb0RPICrgXlvYGaooIxtqnZL6QKVIQyEENrsaF2zAl0vVrgXeG17LF26mQkLxX0PEgfBDfcBv3VUmY3achtxVB6gujk5YQmCTwGn8B2PXChtARvg3uZiheZ3bgKUv1yi9fFw3p-qh3fPBCF2g0veZtTRlrD8hzQt-8_6AALhQqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803672068</pqid></control><display><type>article</type><title>Uncovering doubly charged scalars with dominant three-body decays using machine learning</title><source>Free E- Journals</source><creator>Flacke, Thomas ; Jeong Han Kim ; Kunkel, Manuel ; Ko, Pyungwon ; Pi, Jun Seung ; Porod, Werner ; Schwarze, Leonard</creator><creatorcontrib>Flacke, Thomas ; Jeong Han Kim ; Kunkel, Manuel ; Ko, Pyungwon ; Pi, Jun Seung ; Porod, Werner ; Schwarze, Leonard</creatorcontrib><description>We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Deep learning ; Image classification ; Kinematics ; Leptons ; Luminosity ; Machine learning ; Pair production ; Scalars</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Flacke, Thomas</creatorcontrib><creatorcontrib>Jeong Han Kim</creatorcontrib><creatorcontrib>Kunkel, Manuel</creatorcontrib><creatorcontrib>Ko, Pyungwon</creatorcontrib><creatorcontrib>Pi, Jun Seung</creatorcontrib><creatorcontrib>Porod, Werner</creatorcontrib><creatorcontrib>Schwarze, Leonard</creatorcontrib><title>Uncovering doubly charged scalars with dominant three-body decays using machine learning</title><title>arXiv.org</title><description>We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.</description><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Image classification</subject><subject>Kinematics</subject><subject>Leptons</subject><subject>Luminosity</subject><subject>Machine learning</subject><subject>Pair production</subject><subject>Scalars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjk0KwjAYRIMgWLR3CLguxMTW7kXxAAruSkw-m5Q00fwovb0RPICrgXlvYGaooIxtqnZL6QKVIQyEENrsaF2zAl0vVrgXeG17LF26mQkLxX0PEgfBDfcBv3VUmY3achtxVB6gujk5YQmCTwGn8B2PXChtARvg3uZiheZ3bgKUv1yi9fFw3p-qh3fPBCF2g0veZtTRlrD8hzQt-8_6AALhQqQ</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Flacke, Thomas</creator><creator>Jeong Han Kim</creator><creator>Kunkel, Manuel</creator><creator>Ko, Pyungwon</creator><creator>Pi, Jun Seung</creator><creator>Porod, Werner</creator><creator>Schwarze, Leonard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230418</creationdate><title>Uncovering doubly charged scalars with dominant three-body decays using machine learning</title><author>Flacke, Thomas ; Jeong Han Kim ; Kunkel, Manuel ; Ko, Pyungwon ; Pi, Jun Seung ; Porod, Werner ; Schwarze, Leonard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28036720683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Image classification</topic><topic>Kinematics</topic><topic>Leptons</topic><topic>Luminosity</topic><topic>Machine learning</topic><topic>Pair production</topic><topic>Scalars</topic><toplevel>online_resources</toplevel><creatorcontrib>Flacke, Thomas</creatorcontrib><creatorcontrib>Jeong Han Kim</creatorcontrib><creatorcontrib>Kunkel, Manuel</creatorcontrib><creatorcontrib>Ko, Pyungwon</creatorcontrib><creatorcontrib>Pi, Jun Seung</creatorcontrib><creatorcontrib>Porod, Werner</creatorcontrib><creatorcontrib>Schwarze, Leonard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flacke, Thomas</au><au>Jeong Han Kim</au><au>Kunkel, Manuel</au><au>Ko, Pyungwon</au><au>Pi, Jun Seung</au><au>Porod, Werner</au><au>Schwarze, Leonard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Uncovering doubly charged scalars with dominant three-body decays using machine learning</atitle><jtitle>arXiv.org</jtitle><date>2023-04-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2803672068 |
source | Free E- Journals |
subjects | Artificial neural networks Deep learning Image classification Kinematics Leptons Luminosity Machine learning Pair production Scalars |
title | Uncovering doubly charged scalars with dominant three-body decays using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Uncovering%20doubly%20charged%20scalars%20with%20dominant%20three-body%20decays%20using%20machine%20learning&rft.jtitle=arXiv.org&rft.au=Flacke,%20Thomas&rft.date=2023-04-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2803672068%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803672068&rft_id=info:pmid/&rfr_iscdi=true |