Uncovering doubly charged scalars with dominant three-body decays using machine learning

We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Flacke, Thomas, Jeong Han Kim, Kunkel, Manuel, Ko, Pyungwon, Pi, Jun Seung, Porod, Werner, Schwarze, Leonard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Flacke, Thomas
Jeong Han Kim
Kunkel, Manuel
Ko, Pyungwon
Pi, Jun Seung
Porod, Werner
Schwarze, Leonard
description We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2803672068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803672068</sourcerecordid><originalsourceid>FETCH-proquest_journals_28036720683</originalsourceid><addsrcrecordid>eNqNjk0KwjAYRIMgWLR3CLguxMTW7kXxAAruSkw-m5Q00fwovb0RPICrgXlvYGaooIxtqnZL6QKVIQyEENrsaF2zAl0vVrgXeG17LF26mQkLxX0PEgfBDfcBv3VUmY3achtxVB6gujk5YQmCTwGn8B2PXChtARvg3uZiheZ3bgKUv1yi9fFw3p-qh3fPBCF2g0veZtTRlrD8hzQt-8_6AALhQqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803672068</pqid></control><display><type>article</type><title>Uncovering doubly charged scalars with dominant three-body decays using machine learning</title><source>Free E- Journals</source><creator>Flacke, Thomas ; Jeong Han Kim ; Kunkel, Manuel ; Ko, Pyungwon ; Pi, Jun Seung ; Porod, Werner ; Schwarze, Leonard</creator><creatorcontrib>Flacke, Thomas ; Jeong Han Kim ; Kunkel, Manuel ; Ko, Pyungwon ; Pi, Jun Seung ; Porod, Werner ; Schwarze, Leonard</creatorcontrib><description>We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Deep learning ; Image classification ; Kinematics ; Leptons ; Luminosity ; Machine learning ; Pair production ; Scalars</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Flacke, Thomas</creatorcontrib><creatorcontrib>Jeong Han Kim</creatorcontrib><creatorcontrib>Kunkel, Manuel</creatorcontrib><creatorcontrib>Ko, Pyungwon</creatorcontrib><creatorcontrib>Pi, Jun Seung</creatorcontrib><creatorcontrib>Porod, Werner</creatorcontrib><creatorcontrib>Schwarze, Leonard</creatorcontrib><title>Uncovering doubly charged scalars with dominant three-body decays using machine learning</title><title>arXiv.org</title><description>We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.</description><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Image classification</subject><subject>Kinematics</subject><subject>Leptons</subject><subject>Luminosity</subject><subject>Machine learning</subject><subject>Pair production</subject><subject>Scalars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjk0KwjAYRIMgWLR3CLguxMTW7kXxAAruSkw-m5Q00fwovb0RPICrgXlvYGaooIxtqnZL6QKVIQyEENrsaF2zAl0vVrgXeG17LF26mQkLxX0PEgfBDfcBv3VUmY3achtxVB6gujk5YQmCTwGn8B2PXChtARvg3uZiheZ3bgKUv1yi9fFw3p-qh3fPBCF2g0veZtTRlrD8hzQt-8_6AALhQqQ</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Flacke, Thomas</creator><creator>Jeong Han Kim</creator><creator>Kunkel, Manuel</creator><creator>Ko, Pyungwon</creator><creator>Pi, Jun Seung</creator><creator>Porod, Werner</creator><creator>Schwarze, Leonard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230418</creationdate><title>Uncovering doubly charged scalars with dominant three-body decays using machine learning</title><author>Flacke, Thomas ; Jeong Han Kim ; Kunkel, Manuel ; Ko, Pyungwon ; Pi, Jun Seung ; Porod, Werner ; Schwarze, Leonard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28036720683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Image classification</topic><topic>Kinematics</topic><topic>Leptons</topic><topic>Luminosity</topic><topic>Machine learning</topic><topic>Pair production</topic><topic>Scalars</topic><toplevel>online_resources</toplevel><creatorcontrib>Flacke, Thomas</creatorcontrib><creatorcontrib>Jeong Han Kim</creatorcontrib><creatorcontrib>Kunkel, Manuel</creatorcontrib><creatorcontrib>Ko, Pyungwon</creatorcontrib><creatorcontrib>Pi, Jun Seung</creatorcontrib><creatorcontrib>Porod, Werner</creatorcontrib><creatorcontrib>Schwarze, Leonard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flacke, Thomas</au><au>Jeong Han Kim</au><au>Kunkel, Manuel</au><au>Ko, Pyungwon</au><au>Pi, Jun Seung</au><au>Porod, Werner</au><au>Schwarze, Leonard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Uncovering doubly charged scalars with dominant three-body decays using machine learning</atitle><jtitle>arXiv.org</jtitle><date>2023-04-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a deep learning-based search strategy for pair production of doubly charged scalars undergoing three-body decays to \(W^+ t\bar b\) in the same-sign lepton plus multi-jet final state. This process is motivated by composite Higgs models with an underlying fermionic UV theory. We demonstrate that for such busy final states, jet image classification with convolutional neural networks outperforms standard fully connected networks acting on reconstructed kinematic variables. We derive the expected discovery reach and exclusion limit at the high-luminosity LHC.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2803672068
source Free E- Journals
subjects Artificial neural networks
Deep learning
Image classification
Kinematics
Leptons
Luminosity
Machine learning
Pair production
Scalars
title Uncovering doubly charged scalars with dominant three-body decays using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Uncovering%20doubly%20charged%20scalars%20with%20dominant%20three-body%20decays%20using%20machine%20learning&rft.jtitle=arXiv.org&rft.au=Flacke,%20Thomas&rft.date=2023-04-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2803672068%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803672068&rft_id=info:pmid/&rfr_iscdi=true